Acceso abierto

Increasing the Efficiency of Ultrasonic Dispersion System with use of Control Loop to Automatic Frequency Adjusting


Cite

L.Thompson, L. Doraiswamy. Sonochemistry: science and engineering, Industrial and Engineering Chemistry Research 38 (4), 1215-1249, 1999.10.1021/ie9804172 Search in Google Scholar

M.Yakut, A.Tangel, C.Tangel, “A microcontroller based generator design for ultrasonic cleaning machines” journal of electrical & electronics engineering , volume 9, pp.853-860 (2009) Search in Google Scholar

C. Buasri, A. Jangwanitlert, “Comparison of switching strategies for an ultrasonic cleaner”, 5th International Conference on Electrical Engineering / Electronics, Computer, Telecommunications and Information Technology, ECTI-CON pp. 1005-1008 (2008).10.1109/ECTICON.2008.4600602 Search in Google Scholar

A.Jangwanitlert, P.Paisuwana and T.Vijaktakul, “Ultrasonic cleaner” proc, in EECON 22,Kasetsart University, Vol 22,2542 (1999). Search in Google Scholar

Ramos A., Emeteriao J. L. S, “Improvement in transient piezoelectric responses of NDE transceivers using selective damping and tuning networks”, IEEE transactions on ultrasonics ferroelectrics and frequency control. Vol 47. No 4. P. 826-835 (2000).10.1109/58.852064 Search in Google Scholar

H. Kifune, Y. Hatanaka and M. Nakaoka, “Cost effective phase shifted pulse modulation soft switching high frequency inverter for induction heating applications”, Proc. IEE Electrical Power Appl. Vol. 151, pp. 19-25 (2004). Search in Google Scholar

L. Svilainis, G.Motiejunas, “Power amplifier fr ultrasonic transducer excitatin” ULTRAGARSAS, Nr.1 (58), pp. 30-36, (2006). Search in Google Scholar

T.Suzuki, H.Ikeda, Y.Mizutani, T.Nakabori, Y.Ichioka, H.Yoshida, K.Honda, T.Miyamoto, and S.Sano, “Full-Bridged MOS-FET DC-to-RF Inverter for High Frequency Ultrasonic Transducer at 3 MHz”, IEEE ISIE’95, pp.232-236 (1995). Search in Google Scholar

H. Fujita and H. Akagi, “Control and Performance of a Pulse-Density Modulated Series- Resonant Inverter for Corona Discharge Processes”, IEEE Trans. on Industry Application, Vol. 35, pp. 621-627 (1999). Search in Google Scholar

J. Ishikawa, Y. Mizutani, T. Suzuki, H. Ikeda, H. Yoshida, “High-frequency drivepower and frequency control for ultrasonic transducer operating at 3 MHz”, Industry Applications Conference, 1997. 32. IAS Annual Meeting, IAS ‘97,Vol. 2, pp. 900-905, (1997). Search in Google Scholar

Domarkas V., Ka.ys R.-J.” Piezoelectric transducers for measuring devices”. Vilnius: Mintis P. 255 (1975). Search in Google Scholar

P. Fabijanski, R. Lagoda, “Series resonant converter with sandwich-type piezoelectric ceramic transducers”, Proceedings of IEEE International Conference on Industrial Technology (ICIT ‘96), pp. 252-256, (1996). Search in Google Scholar

Le Locle, “Piezoelectric Converters Modeling and Characterization” published by M.P. Interconsulting, E-book, 266 pages, August (2004). Search in Google Scholar

M. H. Fazalul Rahiman, R.Abdul Rahim, J. Pusppanathan, “Two-Phase Flow Regime Identification by UltrasonicComputerized Tomography” Sensors & Transducers Journal, Vol. 116, Issue 5, May 2010, pp. 76-82. Search in Google Scholar

A. Kannath and R. J. Dewhurst, “Real-time measurement of acoustic field displacements using ultrasonic interferometry,” Meas. Sci. Technol., vol. 15, pp. 59–66, 2004.10.1088/0957-0233/15/12/N01 Search in Google Scholar

M. L. Sanderson and H. Yeung, “Guidelines for the use of ultrasonic non-invasive metering technique,” Flow Meas. Instrum., vol. 13, pp. 125–142, 2002.10.1016/S0955-5986(02)00043-2Search in Google Scholar

eISSN:
1178-5608
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Engineering, Introductions and Overviews, other