Cite

Melman S, Moses Y, Medioni G, et al. The multi-strand graph for a PTZ tracker[J]. Journal of Mathematical Imaging and Vision, 2017, 6(1):1-15.MelmanSMosesYMedioniGThe multi-strand graph for a PTZ tracker[J]Journal of Mathematical Imaging and Vision20176(1):11510.1109/AVSS.2015.7301768Search in Google Scholar

Liu N, Wu H, Lin L. Hierarchical ensemble of background models for PTZ-based video surveillance[J]. IEEE Transactions on Cybernetics, 2015, 45(1):89.LiuNWuHLinL.Hierarchical ensemble of background models for PTZ-based video surveillance[J]IEEE Transactions on Cybernetics201545(1):8910.1109/TCYB.2014.232049324860044Search in Google Scholar

Konda Kr, Conci N, De Natale F. Global Coverage Maximization in PTZ-Camera Networks Based on Visual Quality Assessment[J]. IEEE SENSORS JOURNAL, 2016, 16(16):6317-6332.KrKondaConciNDe NataleF.Global Coverage Maximization in PTZ-Camera Networks Based on Visual Quality Assessment[J]IEEE SENSORS JOURNAL201616(16):6317633210.1109/JSEN.2016.2584179Search in Google Scholar

Xu Y, Song D. Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera[J]. Autonomous Robots, 2010, 29(1):53-66.XuYSongD.Systems and algorithms for autonomous and scalable crowd surveillance using robotic PTZ cameras assisted by a wide-angle camera[J]Autonomous Robots201029(1):536610.1007/s10514-010-9188-xSearch in Google Scholar

Yu JJ, Lu DF, Hao GB. Design and analysis of a compliant parallel pan-tilt platform[J]. MECCANICA,2016, 51(7):15591570.YuJJLuDFHaoGB.Design and analysis of a compliant parallel pan-tilt platform[J]MECCANICA,201651(7):1559157010.1007/s11012-015-0116-1Search in Google Scholar

Evren S, Yavuz F, Unel M. High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular Acceleration Feedback from a Master-Slave Kalman Filter[J]. Journal of Intelligent & Robotic Systems, 2017(3):1-31.EvrenSYavuzFUnelM.High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular Acceleration Feedback from a Master-Slave Kalman Filter[J]Journal of Intelligent & Robotic Systems2017(3):13110.1007/s10846-017-0522-9Search in Google Scholar

Mercader P, Åström K J, Baños A, et al. Robust PID Design Based on QFT and Convex-Concave Optimization[J]. IEEE Transactions on Control Systems Technology, 2017, PP(99):1-12.MercaderPÅströmK JBañosARobust PID Design Based on QFT and Convex-Concave Optimization[J]IEEE Transactions on Control Systems Technology2017PP(99):11210.1109/TCST.2016.2562581Search in Google Scholar

Li B. An optimal PID controller design for nonlinear constrained optimal control problems[J]. Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 2017, 16(4):1101-1117.LiB.An optimal PID controller design for nonlinear constrained optimal control problems[J]Discrete and Continuous Dynamical Systems - Series B (DCDS-B)201716(4):1101111710.3934/dcdsb.2011.16.1101Search in Google Scholar

Kim J H, Hur S M, Oh Y. Performance analysis for bounded persistent disturbances in PD/PID-controlled robotic systems with its experimental demonstrations[J]. International Journal of Control, 2017:1-30.KimJ HHurS MOhY.Performance analysis for bounded persistent disturbances in PD/PID-controlled robotic systems with its experimental demonstrations[J]International Journal of Control201713010.1080/00207179.2017.1288301Search in Google Scholar

Saab S S. An optimal stochastic multivariable PID controller: a direct output tracking approach[J]. International Journal of Control, 2017:1-29.SaabS S.An optimal stochastic multivariable PID controller: a direct output tracking approach[J]International Journal of Control201712910.1080/00207179.2017.1364425Search in Google Scholar

eISSN:
2470-8038
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, other