Acceso abierto

The Study of Following Behavior to Bi-direction Pedestrian Flow with the Dynamic Preconscious Effect


Cite

[1] Henderson L.F., The statistics of crowd fluids[J], Nature, 1971, 229(5): 381-383. Search in Google Scholar

[2] Hughes R.L., A continuum theory for the flow of pedestrians[J], Transportation Research Part B, 2002, 36(6): 507-535. Search in Google Scholar

[3] Hoogendoorn S.P. and Bovy P.H.L., Dynamic user-optimal assignment in continuous time and space[J], Transportation Research Part B, 2004, 38(7): 571-592. Search in Google Scholar

[4] Hoogendoorn S.P. and Bovy P.H.L., Pedestrian route-choice and activity scheduling theory and models[J], Transportation Research Part B, 2004, 38(2): 169-190. Search in Google Scholar

[5] Huang L., Xia Y., Wong S., Shu C., Zhang M. and Lam W., Dynamic continuum model for bi-directional pedestrian flows[J], Engineering and Computational Mechanics, 2009,162(3): 67-75. Search in Google Scholar

[6] Huang L., Wong S.C., Zhang M.P., Shu C.W. and Lam W.H.K., Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm[J], Transportation Research Part B, 2009, 43(1): 127-141. Search in Google Scholar

[7] Xia Y.H., Wong S.C. and Shu C.W., Dynamic continuum pedestrian flow model with memory effect[J], Physical Review E, 2009, 79(6): 066113. Search in Google Scholar

[8] Yanqun Jiang,S.C. Wong,Peng Zhang,Ruxun Liu,Yali Duan,Keechoo Choi. Numerical simulation of a continuum model for bi-directional pedestrian flow[J]. Applied Mathematics and Computation. 2011 (10):136-157. Search in Google Scholar

[9] Jiang Y.Q., Zhang P., Wong S.C. and Liu R.X., A higher-order macroscopic model for pedestrian flows[J], Physica A, 2010, 389(3): 4623-4635. Search in Google Scholar

[10] Lv W, Fang Z, Wei X, et al. Experiment and Modelling for Pedestrian Following Behavior Using Velocity-headway Relation[J]. Procedia Engineering, 2013,62:525-531. Search in Google Scholar

[11] Hoogendoorn S P, van Wageningen-Kessels F L M, Daamen W, et al. Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena[J]. Physica A: Statistical Mechanics and its Applications, 2014,416:684-694. Search in Google Scholar

[12] Hänseler F S, Bierlaire M, Farooq B, et al. A macroscopic loading model for time-varying pedestrian flows in public walking areas[J]. Transportation Research Part B: Methodological, 2014,69:60-80. Search in Google Scholar

[13] Xiao Y, Gao Z, Qu Y, et al. A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach[J]. Transportation Research Part C: Emerging Technologies, 2016,68:566-580. Search in Google Scholar

[14] Fu L, Song W, Lv W, et al. Multi-grid simulation of counter flow pedestrian dynamics with emotion propagation[J]. Simulation Modelling Practice and Theory, 2016,60:1-14. Search in Google Scholar

[15] Weng W.G., Chen T., Yuan H.Y. and Fan W.C., Cellular automaton simulation of pedestrian counter flow with different walk velocities[J], Physical Review E, 2006, 74(3):036102. Search in Google Scholar

[16] Yang L.Z., Li J. and Liu S.B., Simulation of pedestrian counter-flow with right-moving preference[J], Physica A, 2008, 387(1): 3281-3289. Search in Google Scholar

[17] Seyfried A., Portz A. and Schadschneider A., Phase coexistence in congested states of pedestrian dynamics[C]. In: Bandini S, et al., editors. Cellular Automata, Springer-Verlag Berlin Heidelberg, 2010, 12(6): 496-505. Search in Google Scholar

[18] Muramatsu H. and Nagatani T., Jamming transition in two-dimensional pedestrian traffic [J], Physica A, 2000, 275(6): 281-291. Search in Google Scholar

[19] Muramatsu M. and Nagatani T., Jamming transition of pedestrian traffic at a crossing with open boundaries [J], Physica A, 2000, 286(5): 377-390. Search in Google Scholar

eISSN:
2470-8038
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, other