Cite

1. Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018;34:207-14.10.1016/j.kjms.2018.01.007 Search in Google Scholar

2. Baloul SS. Osteoclastogenesis and Osteogenesis during Tooth Movement. Front Oral Biol 2016;18:75-9.10.1159/000351901 Search in Google Scholar

3. Isola G, Matarese G, Cordasco G, Perillo L, Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol 2016;65:299-327. Search in Google Scholar

4. Lilja E, Lindskog S, Hammarström L. Orthodontic forces and periodontal compression. Acta Odontologica Scandinavica 1981;39:367-78.10.3109/00016358109162709 Search in Google Scholar

5. Dutra EH, Nanda R, Yadav S. Bone Response of Loaded Periodontal Ligament. Curr Osteoporos Rep 2016;14:280-3.10.1007/s11914-016-0328-x Search in Google Scholar

6. Katona TR, Paydar NH, Akay HU, Roberts WE. Stress analysis of bone modeling response to rat molar orthodontics. J Biomech 1995;28:27-38.10.1016/0021-9290(94)E0041-Z Search in Google Scholar

7. Yu JH, Huang HL, Liu CF, Wu J, Li YF, Tsai MT et al. Does Orthodontic Treatment Affect the Alveolar Bone Density? Medicine 2016;95:e3080.10.1097/MD.0000000000003080499892226962841 Search in Google Scholar

8. Bumann A, Carvalho RS, Schwarzer CL, Yen EH. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 1997;19:29-37.10.1093/ejo/19.1.299071043 Search in Google Scholar

9. Kitaura H, Kimura K, Ishida M, Sugisawa H, Kohara H, Yoshimatsu M et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. Scientific World Journal 2014;2014:617032.10.1155/2014/617032391609824574904 Search in Google Scholar

10. Wolff J. Das gesetz der transformation der knochen. A Hirshwald 1892;1:1-152. Search in Google Scholar

11. Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care 2017;26.10.1111/ecc.1274028786518 Search in Google Scholar

12. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annual Rev Biomed Eng 2006;8:455-98.10.1146/annurev.bioeng.8.061505.09572116834564 Search in Google Scholar

13. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 2004;19:1006-12.10.1359/JBMR.04030715125798 Search in Google Scholar

14. Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep 2013;11:92-8. Search in Google Scholar

15. Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res 2002;17:661-7.10.1359/jbmr.2002.17.4.66111918223 Search in Google Scholar

16. Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 1983;31:3-9. Search in Google Scholar

17. Tanne K, Nagataki T, Matsubara S, Kato J, Terada Y, Sibaguchi T et al. Association between mechanical stress and bone remodeling. J Osaka Univ Dent Sch 1990;30:64-71. Search in Google Scholar

18. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010;285:25103-8.10.1074/jbc.R109.041087291907120501658 Search in Google Scholar

19. Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 2003;73:86-92. Search in Google Scholar

20. Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G. The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 2008;43:740-7.10.1016/j.bone.2008.06.01218656564 Search in Google Scholar

21. Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schüler C et al. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res 2014;29:693-704.10.1002/jbmr.2079393730224038141 Search in Google Scholar

22. Dai Q, Zhou S, Zhang P, Ma X , Ha N, Yang X et al. Force-induced increased osteogenesis enables accelerated orthodontic tooth movement in ovariectomized rats. Sci Rep 2017;7:3906.10.1038/s41598-017-04422-0547859428634415 Search in Google Scholar

23. Tanaka M, Miyazawa K, Tabuchi M, Yabumoto T, Kadota M, Yoshizako M et al. Effect of Reveromycin A on experimental tooth movement in OPG-/-mice. J Dent Res 2012;91:771-610.1177/002203451245102622674934 Search in Google Scholar

24. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 2009;30:4522-32.10.1016/j.biomaterials.2009.05.021287169819501905 Search in Google Scholar

25. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987;2:595-610.10.1002/jbmr.56500206173455637 Search in Google Scholar

26. Lu W, Zhang X, Firth F, Mei L, Yi J, Gong C et al. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol 2019;99:43-50.10.1016/j.archoralbio.2018.12.01130605820 Search in Google Scholar

27. Lilja E, Lindskog S, Hammarström L. Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol Scand 1984;42:1-11.10.3109/00016358409041125 Search in Google Scholar

28. Tsai CY, Yang TK, Hsieh HY, Yang LY. Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod 2016;86:558-64.10.2319/052015-343.1 Search in Google Scholar

29. Yang CY, Jeon HH, Alshabab A, Lee YJ, Chung CH, Graves DT. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci 2018;10:3.10.1038/s41368-017-0004-8 Search in Google Scholar

30. Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 2004;74:3-15. Search in Google Scholar

31. Meeran NA. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. J Orthod Sci 2012;1:2-10.10.4103/2278-0203.94769 Search in Google Scholar

32. Mao Y, Wang L, Zhu Y, Liu Y, Dai H, Zhou J et al. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3beta/beta-catenin signaling pathway. J Mol Histol 2018;49:75-84.10.1007/s10735-017-9748-x Search in Google Scholar

33. Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 1999;24:371-9.10.1016/S8756-3282(99)00009-5 Search in Google Scholar

34. Verna C. Regional Acceleratory Phenomenon. Front Oral Biol 2015;18:28-35.10.1159/00035189726599115 Search in Google Scholar

35. Lee W. Corticotomy for orthodontic tooth movement. J Korean Assoc Oral Maxillofac Surg 2018;44:251-8.10.5125/jkaoms.2018.44.6.251632701630637238 Search in Google Scholar

eISSN:
2207-7480
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Medicine, Basic Medical Science, other