Cite

Grissa I., Vergnaud G., Pourcel C.: The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 8, 172 DOI:10.1186/1471-2105-8-172 (2007) Grissa I. Vergnaud G. Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8 172 DOI:10.1186/1471-2105-8-172 2007189203617521438 Open DOISearch in Google Scholar

Beloglazova N., Yakunin A.F., et al.: A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem. 283, 20361–20371 (2008) Beloglazova N. Yakunin A.F. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem 283 20361 20371 200810.1074/jbc.M803225200245926818482976 Search in Google Scholar

Horvath P., Romero D.A., Coute-Monvoisin A.-C., Richards M., Deveau H., Moineau S., Boyaval P., Fremaux C., Barrangou R.: Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 190, 1401–1412 (2008) Horvath P. Romero D.A. Coute-Monvoisin A.-C. Richards M. Deveau H. Moineau S. Boyaval P. Fremaux C. Barrangou R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus J Bacteriol 190 1401 1412 200810.1128/JB.01415-07223819618065539 Search in Google Scholar

Jansen R., Embden J.D.A. van, Gaastra W., Schouls L.M.: Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 43, 1565–1575 (2002) Jansen R. Embden J.D.A. van Gaastra W. Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43 1565 1575 200210.1046/j.1365-2958.2002.02839.x11952905 Search in Google Scholar

Makarova K.S., Koonin E.V., et al.: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9, 467–477 (2011) Makarova K.S. Koonin E.V. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9 467 477 201110.1038/nrmicro2577338044421552286 Search in Google Scholar

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P.: CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712 (2007) Barrangou R. Fremaux C. Deveau H. Richards M. Boyaval P. Moineau S. Romero D.A. Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709 1712 200710.1126/science.113814017379808 Search in Google Scholar

Ishino Y., Shinagawa H., Makino K., Amemura M., Nakatura A.: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 169, 5429–5433 (1987) Ishino Y. Shinagawa H. Makino K. Amemura M. Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169 5429 5433 198710.1128/jb.169.12.5429-5433.19872139683316184 Search in Google Scholar

Kamerbeek J., van Embden J., et al.: Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 35, 907–914 (1997) Kamerbeek J. van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35 907 914 199710.1128/jcm.35.4.907-914.19972297009157152 Search in Google Scholar

Mojica F.J.M., Diez-Villasenor C., Soria E., Juez G.: Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 36, 244–246 (2000) Mojica F.J.M. Diez-Villasenor C. Soria E. Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36 244 246 200010.1046/j.1365-2958.2000.01838.x10760181 Search in Google Scholar

Comas I., Homolka S., Niemann S., Gagneux S.: Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One. 4, e7815 (2009) Comas I. Homolka S. Niemann S. Gagneux S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4 e7815 200910.1371/journal.pone.0007815277281319915672 Search in Google Scholar

Makarova K.S., Grishin N. V., Shabalina S.A., Wolf Y.I., Koonin E.V.A.: putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 16, 1–7 (2006) Makarova K.S. Grishin N. V. Shabalina S.A. Wolf Y.I. Koonin E.V.A. putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 16 1 7 200610.1186/1745-6150-1-7146298816545108 Search in Google Scholar

Haft D.H., Selengut J., Mongodin E.F., Nelson K.E.A.: Guild of 45 CRISPR-associated (Cas) protein families and multiple CRI-SPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 1, e60 (2005) Haft D.H. Selengut J. Mongodin E.F. Nelson K.E.A. Guild of 45 CRISPR-associated (Cas) protein families and multiple CRI-SPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1 e60 200510.1371/journal.pcbi.0010060128233316292354 Search in Google Scholar

Makarova K.S., Koonin E.V., et al.: Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 18, 67–83 (2019) Makarova K.S. Koonin E.V. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18 67 83 201910.1038/s41579-019-0299-x890552531857715 Search in Google Scholar

Godde J.S., Bickerton A.: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol. 62, 718–729 (2006) Godde J.S. Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62 718 729 200610.1007/s00239-005-0223-z16612537 Search in Google Scholar

Kunin V., Sorek R., Hugenholtz P.: Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007) Kunin V. Sorek R. Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8 R61 200710.1186/gb-2007-8-4-r61189600517442114 Search in Google Scholar

Bolotin A., Hols P., et al.: Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol. 22, 1554–1558 (2004) Bolotin A. Hols P. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus Nat Biotechnol 22 1554 1558 200410.1038/nbt1034741666015543133 Search in Google Scholar

Shmakov S., Koonin E.V., et al.: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 60, 385–397 (2015) Shmakov S. Koonin E.V. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60 385 397 201510.1016/j.molcel.2015.10.008466026926593719 Search in Google Scholar

Mir A., Edraki A., Lee J., Sontheimer E.J.: Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem Biol. 13, 357–365 (2018) Mir A. Edraki A. Lee J. Sontheimer E.J. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem Biol 13 357 365 201810.1021/acschembio.7b00855581593829202216 Search in Google Scholar

Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O.: Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156, 935–949 (2014) Nishimasu H. Ran F.A. Hsu P.D. Konermann S. Shehata S.I. Dohmae N. Ishitani R. Zhang F. Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 935 949 201410.1016/j.cell.2014.02.001413993724529477 Search in Google Scholar

Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E.: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602–607 (2011) Deltcheva E. Chylinski K. Sharma C.M. Gonzales K. Chao Y. Pirzada Z.A. Eckert M.R. Vogel J. Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 602 607 201110.1038/nature09886307023921455174 Search in Google Scholar

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E.A.: Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821 (2012) Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E.A. Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816 821 201210.1126/science.1225829628614822745249 Search in Google Scholar

Louwen R., Staals R.H.J., Endtz H.P., van Baarlen P., van der Oost J.: The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78, 74–88 (2014) Louwen R. Staals R.H.J. Endtz H.P. van Baarlen P. van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78 74 88 201410.1128/MMBR.00039-13395773424600041 Search in Google Scholar

Gomaa A., Klumpe H.E., Luo M.L., Selle K., Barrangou R., Beisel C.L.: Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio. 5, e00928–13 (2014) Gomaa A. Klumpe H.E. Luo M.L. Selle K. Barrangou R. Beisel C.L. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5 e00928 13 201410.1128/mBio.00928-13390327724473129 Search in Google Scholar

Semenova E., Jore M.M., Datsenko K.A., Semenova A., Westra E.R., Wanner B., van der Oost J., Brouns S.J., Severinov K.: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS. 108, 10098–10103 (2011) Semenova E. Jore M.M. Datsenko K.A. Semenova A. Westra E.R. Wanner B. van der Oost J. Brouns S.J. Severinov K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108 10098 10103 201110.1073/pnas.1104144108312186621646539 Search in Google Scholar

Makarova K.S., Koonin E.V., et al.: An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 13, 722–736 (2015) Makarova K.S. Koonin E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13 722 736 201510.1038/nrmicro3569542611826411297 Search in Google Scholar

Abadia E., Sola C., et al.: Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol. 10, 1066–1074 (2010) Abadia E. Sola C. Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol 10 1066 1074 201010.1016/j.meegid.2010.07.00620624486 Search in Google Scholar

Gomgnimbou M.K., Abadia E., Zhang J., Refregier G., Panaiotov S., Bachiyska E., Sola C.: “Spoligoriftyping,” a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system. J Clin Microbiol. 50, 3172–3179 (2012) Gomgnimbou M.K. Abadia E. Zhang J. Refregier G. Panaiotov S. Bachiyska E. Sola C. “Spoligoriftyping,” a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system. J Clin Microbiol 50 3172 3179 201210.1128/JCM.00976-12345742722814456 Search in Google Scholar

Huang Q., Luo H., Liu M., Zeng J., Abdalla A.E., Duan X., Li Q, Xie J.: The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. Infect Genet Evol. 40, 295–301 (2016) Huang Q. Luo H. Liu M. Zeng J. Abdalla A.E. Duan X. Li Q Xie J. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis Infect Genet Evol 40 295 301 201610.1016/j.meegid.2015.10.01926498723 Search in Google Scholar

Schouls L.M., Reulen S., Duim B., Wagenaar J.A., Willems R.J.L., Dingle K.E., Colles F.M., Van Embden J.D.: Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol. 41, 15–26 (2003) Schouls L.M. Reulen S. Duim B. Wagenaar J.A. Willems R.J.L. Dingle K.E. Colles F.M. Van Embden J.D. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41 15 26 200310.1128/JCM.41.1.15-26.200314961712517820 Search in Google Scholar

Mokrousov I., Limeschenko E., Vyazovaya A., Narvskaya O.: Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J. 2, 901–906 (2007) Mokrousov I. Limeschenko E. Vyazovaya A. Narvskaya O. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J 2 901 906 200710.1002/biot.20070003517431853 Search in Google Scholar

Ginevra C., Jarraud S., et al.: Legionella pneumophila sequence type 1/Paris pulsotype subtyping by spoligotyping. J Clin Microbiol. 50, 696–701 (2012) Ginevra C. Jarraud S. Legionella pneumophila sequence type 1/Paris pulsotype subtyping by spoligotyping. J Clin Microbiol 50 696 701 201210.1128/JCM.06180-11329515022205819 Search in Google Scholar

Dang T.N.D., Zhang L., Zöllner S., Srinivasan U., Abbas K., Marrs C.F., Foxman B.: Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. Infect Genet Evol. 19, 212–218 (2013) Dang T.N.D. Zhang L. Zöllner S. Srinivasan U. Abbas K. Marrs C.F. Foxman B. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. Infect Genet Evol 19 212 218 201310.1016/j.meegid.2013.07.01723891665 Search in Google Scholar

Calleros L., Betancor L., Iraola G., Méndez A., Morsella C., Paolicchi F., Silveyra S., Velilla A., Pérez R.: Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers. J Microbiol Methods. 132, 86–94 (2017) Calleros L. Betancor L. Iraola G. Méndez A. Morsella C. Paolicchi F. Silveyra S. Velilla A. Pérez R. Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers. J Microbiol Methods 132 86 94 201710.1016/j.mimet.2016.11.01227867047 Search in Google Scholar

Price E.P., Smith H., Huygens F., Giffard P.M.: High-Resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni. Appl Env Microb. 73, 3431–3436 (2007) Price E.P. Smith H. Huygens F. Giffard P.M. High-Resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni Appl Env Microb 73 3431 3436 200710.1128/AEM.02702-06190711517400785 Search in Google Scholar

Blasco R.B., Karaca E., Ambrogio C., Cheong T.C., Karayol E., Minero V.G., Voena C., Chiarle R.: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/ Cas9 technology. Cell Rep. 9, 1219–1227 (2014) Blasco R.B. Karaca E. Ambrogio C. Cheong T.C. Karayol E. Minero V.G. Voena C. Chiarle R. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/ Cas9 technology. Cell Rep 9 1219 1227 201410.1016/j.celrep.2014.10.05125456124 Search in Google Scholar

Essletzbichler P., Konopka T., Santoro F., Chen D., Gapp B.V., Kralovics R., Brummelkamp T.R., Nijman S.M., Bürckstümmer T.: Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 24, 2059–2065 (2014) Essletzbichler P. Konopka T. Santoro F. Chen D. Gapp B.V. Kralovics R. Brummelkamp T.R. Nijman S.M. Bürckstümmer T. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res 24 2059 2065 201410.1101/gr.177220.114424832225373145 Search in Google Scholar

Liu H., Wei Z., Dominguez A., Li Y., Wang X., Qi L.S.: CRI-SPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics, 31, 3676–3678 (2015) Liu H. Wei Z. Dominguez A. Li Y. Wang X. Qi L.S. CRI-SPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31 3676 3678 201510.1093/bioinformatics/btv423475795126209430 Search in Google Scholar

Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D.: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 31, 822–826 (2013) Fu Y. Foden J.A. Khayter C. Maeder M.L. Reyon D. Joung J.K. Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31 822 826 201310.1038/nbt.2623377302323792628 Search in Google Scholar

Marraffin L.A., Sontheimer E.J.: Self vs. non-self discrimination during CRISPR RNA-directed immunity. Nature. 463, 568–571 (2010) Marraffin L.A. Sontheimer E.J. Self vs. non-self discrimination during CRISPR RNA-directed immunity. Nature 463 568 571 201010.1038/nature08703281389120072129 Search in Google Scholar

Stern A., Keren L., Wurtzel O., Amitai G., Sorek R.: Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010) Stern A. Keren L. Wurtzel O. Amitai G. Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26 335 340 201010.1016/j.tig.2010.05.008291079320598393 Search in Google Scholar

Delannoy S., Beutin L., Burgos Y., Fach P.: Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol. 50, 3485–3492 (2012) Delannoy S. Beutin L. Burgos Y. Fach P. Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol 50 3485 3492 201210.1128/JCM.01656-12348625122895033 Search in Google Scholar

Sebbane F., Lemaitre N., Sturdevant D.E., Rebeil R., Virtaneva K., Porcella S.F., Hinnebusch B.J.: Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. PNAS. 103, 11766–11771 (2006) Sebbane F. Lemaitre N. Sturdevant D.E. Rebeil R. Virtaneva K. Porcella S.F. Hinnebusch B.J. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. PNAS 103 11766 11771 200610.1073/pnas.0601182103151880116864791 Search in Google Scholar

Gao H., Zhang Y., Han Y., Yang L., Liu X., Guo Z., Tan Y., Huang X., Zhou D., Yang R.: Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol. 11, 39 (2011) Gao H. Zhang Y. Han Y. Yang L. Liu X. Guo Z. Tan Y. Huang X. Zhou D. Yang R. Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis BMC Microbiol 11 39 201110.1186/1471-2180-11-39305069221345178 Search in Google Scholar

Yan X., Zhao C., Budin-Verneuil A., Hartke A., Rince A., Gilmore M.S., Auffray Y., Pichereau V.: The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology, 155, 3226–3237 (2009) Yan X. Zhao C. Budin-Verneuil A. Hartke A. Rince A. Gilmore M.S. Auffray Y. Pichereau V. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology 155 3226 3237 200910.1099/mic.0.026146-019608607 Search in Google Scholar

García-Gutiérrez E., Almendros C., Mojica F.J.M., Guzmán N.M., García-Martínez J.: CRISPR content correlates with the pathogenic potential of Escherichia coli. PLoS One, 10, e0131935 (2015) García-Gutiérrez E. Almendros C. Mojica F.J.M. Guzmán N.M. García-Martínez J. CRISPR content correlates with the pathogenic potential of Escherichia coli PLoS One 10 e0131935 201510.1371/journal.pone.0131935448980126136211 Search in Google Scholar

Touchon M., Charpentier S., Pognard D., Picard B., Arlet G., Rocha E.P.C., Denamur E., Branger C.: Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology, 158, 2997–3004 (2012) Touchon M. Charpentier S. Pognard D. Picard B. Arlet G. Rocha E.P.C. Denamur E. Branger C. Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology 158 2997 3004 201210.1099/mic.0.060814-023059972 Search in Google Scholar

Zegans M.E., Wagner J.C., Cady K.C., Murphy D.M., Hammond J.H., O’Toole G.A. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol. 191, 210–219 (2009) Zegans M.E. Wagner J.C. Cady K.C. Murphy D.M. Hammond J.H. O’Toole G.A. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa J Bacteriol 191 210 219 200910.1128/JB.00797-08261244918952788 Search in Google Scholar

Palmer K.L., Gilmore M.S.: Multidrug-eesistant enterococci lack CRISPR-Cas. MBio. 1, 1–2 (2010) Palmer K.L. Gilmore M.S. Multidrug-eesistant enterococci lack CRISPR-Cas. MBio 1 1 2 201010.1128/mBio.00227-10297535321060735 Search in Google Scholar

Palmer K.L., Whiteley M.: DMS3-42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa. J Bacteriol. 193, 3431–3432 (2011) Palmer K.L. Whiteley M. DMS3-42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa J Bacteriol 193 3431 3432 201110.1128/JB.05066-11313332721551309 Search in Google Scholar

Gasiunas G., Barrangou R., Horvath P., Siksnys V.: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS. 109, E2579–2586 (2012) Gasiunas G. Barrangou R. Horvath P. Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109 E2579 2586 201210.1073/pnas.1208507109346541422949671 Search in Google Scholar

Klein H.L., Malkova A., et al.: Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb Cell. 6, 1–64 (2019) Klein H.L. Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb Cell 6 1 64 201910.15698/mic2019.01.664633423430652105 Search in Google Scholar

Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch.: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153, 910–918 (2013) Wang H. Yang H. Shivalila C.S. Dawlaty M.M. Cheng A.W. Zhang F. Jaenisch One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 910 918 201310.1016/j.cell.2013.04.025396985423643243 Search in Google Scholar

Ding Q., Regan S.N., Xia Y., Oostrom L.A., Cowan C.A., Musunuru K.: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12, 393–394 (2013) Ding Q. Regan S.N. Xia Y. Oostrom L.A. Cowan C.A. Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12 393 394 201310.1016/j.stem.2013.03.006392530923561441 Search in Google Scholar

Kato-Inui T., Takahashi G., Hsu S., Miyaoka Y.: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Res. 46, 4677–4688 (2018) Kato-Inui T. Takahashi G. Hsu S. Miyaoka Y. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Res 46 4677 4688 201810.1093/nar/gky264596141929672770 Search in Google Scholar

Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R.: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 31, 839–843 (2013) Pattanayak V. Lin S. Guilinger J.P. Ma E. Doudna J.A. Liu D.R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31 839 843 201310.1038/nbt.2673378261123934178 Search in Google Scholar

Cornu T.I., Mussolino C., Cathomen T.: Refining strategies to translate genome editing to the clinic. Nat Med. 23, 415–423 (2017) Cornu T.I. Mussolino C. Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med 23 415 423 201710.1038/nm.431328388605 Search in Google Scholar

Kaur K., Gupta A.K., Rajput A., Kumar M.: ge-CRISPR – An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system. Sci Rep-UK. 6, 30870 (2016) Kaur K. Gupta A.K. Rajput A. Kumar M. ge-CRISPR – An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system. Sci Rep-UK 6 30870 201610.1038/srep30870500749427581337 Search in Google Scholar

Cao J., Wu L., Zhang S.-M., Lu M., Cheung W.K.C., Cai W., Gale M., Xu Q., Yan Q.: An easy and efficient inducible CRI-SPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 44, e149 (2016) Cao J. Wu L. Zhang S.-M. Lu M. Cheung W.K.C. Cai W. Gale M. Xu Q. Yan Q. An easy and efficient inducible CRI-SPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44 e149 201610.1093/nar/gkw660510056727458201 Search in Google Scholar

Murovec J., Pirc Ž., Yang B. New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J. 15, 917–926 (2017) Murovec J. Pirc Ž. Yang B. New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15 917 926 201710.1111/pbi.12736550665428371222 Search in Google Scholar

Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F.: Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88 (2016) Slaymaker I.M. Gao L. Zetsche B. Scott D.A. Yan W.X. Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 351 84 88 201610.1126/science.aad5227471494626628643 Search in Google Scholar

Tsai S.Q., Wyvekens N., Khayter C., Foden J.A., Thapar V., Reyon D., Goodwin M.J., Aryee M.J., Joung JK.: Dimeric CRI-SPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 32, 569–576 (2014) Tsai S.Q. Wyvekens N. Khayter C. Foden J.A. Thapar V. Reyon D. Goodwin M.J. Aryee M.J. Joung JK. Dimeric CRI-SPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32 569 576 201410.1038/nbt.2908409014124770325 Search in Google Scholar

Wright A.V., Sternberg S.H., Taylor D.W., Staahl B.T., Bardales J.A., Kornfeld J.E., Doudna J.A.: Rational design of a split-Cas9 enzyme complex. PNAS. 112, 2984–2989 (2015) Wright A.V. Sternberg S.H. Taylor D.W. Staahl B.T. Bardales J.A. Kornfeld J.E. Doudna J.A. Rational design of a split-Cas9 enzyme complex. PNAS 112 2984 2989 201510.1073/pnas.1501698112436422725713377 Search in Google Scholar

Zetsche B., Zhang F., et al.: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771 (2015) Zetsche B. Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 759 771 201510.1016/j.cell.2015.09.038463822026422227 Search in Google Scholar

Cox D.B.T., Gootenberg J.S., Abudayyeh O.O., Franklin B., Kellner M.J., Joung J., Zhang F.: RNA editing with CRISPR-Cas13. Science, 358, 1019–1027 (2017) Cox D.B.T. Gootenberg J.S. Abudayyeh O.O. Franklin B. Kellner M.J. Joung J. Zhang F. RNA editing with CRISPR-Cas13. Science 358 1019 1027 201710.1126/science.aaq0180579385929070703 Search in Google Scholar

Liu Z., Guo D., et al.: Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci. 7, 47 (2017) Liu Z. Guo D. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci 7 47 201710.1186/s13578-017-0174-2559156328904745 Search in Google Scholar

Dash P.K., Gendelman H.E., et al.: Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 10, 2753 (2019) Dash P.K. Gendelman H.E. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun 10 2753 201910.1038/s41467-019-10366-y660661331266936 Search in Google Scholar

Sakuma T., Masaki K., Abe-Chayama H., Mochida K., Yamamoto T., Chayama K.: Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells, 21, 1253–1262 (2016) Sakuma T. Masaki K. Abe-Chayama H. Mochida K. Yamamoto T. Chayama K. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21 1253 1262 201610.1111/gtc.1243727659023 Search in Google Scholar

Yu L., Wang H., et al.: Deletion of HPV18 E6 and E7 genes using dual sgRNA-directed CRISPR/Cas9 inhibits growth of cervical cancer cells. Int J Clin Exp Med. 10, 9206–9013 (2017) Yu L. Wang H. Deletion of HPV18 E6 and E7 genes using dual sgRNA-directed CRISPR/Cas9 inhibits growth of cervical cancer cells. Int J Clin Exp Med 10 9206 9013 2017 Search in Google Scholar

Hsu D.S., Kornepati A.V.R., Glover W., Kennedy E.M., Cullen B.R.: Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Futur Virol. 13, 475–482 (2018) Hsu D.S. Kornepati A.V.R. Glover W. Kennedy E.M. Cullen B.R. Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo Futur Virol 13 475 482 201810.2217/fvl-2018-0010613607730245733 Search in Google Scholar

Hübner A., Petersen B., Keil G.M., Niemann H., Metten leiter T.C., Fuchs W.: Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep-UK. 8, 1449 (2018) Hübner A. Petersen B. Keil G.M. Niemann H. Metten leiter T.C. Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep-UK 8 1449 201810.1038/s41598-018-19626-1578045529362418 Search in Google Scholar

Schwank G., Clevers H., et al.: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13, 653–658 (2013) Schwank G. Clevers H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13 653 658 201310.1016/j.stem.2013.11.00224315439 Search in Google Scholar

Bushby K., Constantin C., et al.: Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9, 77–93 (2010) Bushby K. Constantin C. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9 77 93 201010.1016/S1474-4422(09)70271-619945913 Search in Google Scholar

Nelson C.E., Gersbach C.A., et al.: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 351, 403–407 (2016) Nelson C.E. Gersbach C.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351 403 407 201610.1126/science.aad5143488359626721684 Search in Google Scholar

Mendell J.R., Rodino-Klapac L.R.: Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res. 26, 513–514 (2016) Mendell J.R. Rodino-Klapac L.R. Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 26 513 514 201610.1038/cr.2016.28485676126926391 Search in Google Scholar

Zhang Y., Olson E.N., et al.: Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv. 6, e6812 (2020) Zhang Y. Olson E.N. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv 6 e6812 202010.1126/sciadv.aay6812703092532128412 Search in Google Scholar

Verbeken G., Pirnay J.P., Lavigne R., Ceulemans C., De Vos D., Huys I.: Viruses that can cure, when antibiotics fail… J Microb Biochem Technol. 8, 21–24 (2016) Verbeken G. Pirnay J.P. Lavigne R. Ceulemans C. De Vos D. Huys I. Viruses that can cure, when antibiotics fail… J Microb Biochem Technol 8 21 24 2016 Search in Google Scholar

Sapranauskas R., Gasiunas G., Fremaux C., Barrangou R., Horvath P., Siksnys V.: The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011) Sapranauskas R. Gasiunas G. Fremaux C. Barrangou R. Horvath P. Siksnys V. The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli Nucleic Acids Res 39 9275 9282 201110.1093/nar/gkr606324164021813460 Search in Google Scholar

Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L.A.: Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013) Bikard D. Jiang W. Samai P. Hochschild A. Zhang F. Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41 7429 7437 201310.1093/nar/gkt520375364123761437 Search in Google Scholar

Edgar R., Qimron U. The Escherichia coli CRISPR system protects from lysogenization, lysogens, and prophage induction. J Bacteriol. 192, 6291–6294 (2010) Edgar R. Qimron U. The Escherichia coli CRISPR system protects from lysogenization, lysogens, and prophage induction. J Bacteriol 192 6291 6294 201010.1128/JB.00644-10298121520889749 Search in Google Scholar

Yosef I., Goren M.G., Kiro R., Edgar R., Qimron U.: High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. PNAS. 108, 20136–20141 (2011) Yosef I. Goren M.G. Kiro R. Edgar R. Qimron U. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. PNAS 108 20136 20141 201110.1073/pnas.1113519108325019622114197 Search in Google Scholar

Jiang W., Bikard D., Cox D., Zhang F., Marraffini L.A.: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31, 233–239 (2013) Jiang W. Bikard D. Cox D. Zhang F. Marraffini L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31 233 239 201310.1038/nbt.2508374894823360965 Search in Google Scholar

Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A.: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183 (2013) Qi L.S. Larson M.H. Gilbert L.A. Doudna J.A. Weissman J.S. Arkin A.P. Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 1173 1183 201310.1016/j.cell.2013.02.022366429023452860 Search in Google Scholar

Pawluk A., Bondy-Denomy J., Cheung V.H.W., Maxwell K.L., Davidson A.R.: A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio. 5, 1–7 (2014) Pawluk A. Bondy-Denomy J. Cheung V.H.W. Maxwell K.L. Davidson A.R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa MBio 5 1 7 201410.1128/mBio.00896-14399385324736222 Search in Google Scholar

Bondy-Denomy J., Pawluk A., Maxwell K.L., Davidson A.R.: Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493, 429–432 (2013) Bondy-Denomy J. Pawluk A. Maxwell K.L. Davidson A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493 429 432 201310.1038/nature11723493191323242138 Search in Google Scholar

Maxwell K.L.: Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLOS Pathog. 12, e1005282 (2016) Maxwell K.L. Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLOS Pathog 12 e1005282 201610.1371/journal.ppat.1005282470481226741979 Search in Google Scholar

Pourcel C., Salvignol G., Vergnaud G.: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653–663 (2005) Pourcel C. Salvignol G. Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151 653 663 200510.1099/mic.0.27437-015758212 Search in Google Scholar

Battle S.E., Meyer F., Rello J., Kung V.L., Hauser A.R.: Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol. 190 7130–7140 (2008) Battle S.E. Meyer F. Rello J. Kung V.L. Hauser A.R. Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 190 7130 7140 200810.1128/JB.00785-08258071218757543 Search in Google Scholar

Tyson G.W., Banfield J.F.: Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Env Microbiol. 10, 200–207 (2008) Tyson G.W. Banfield J.F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Env Microbiol 10 200 207 200810.1111/j.1462-2920.2007.01444.x17894817 Search in Google Scholar

Ivančić-Baće I., Cass S.D., Wearne S.J., Bolt E.L.: Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res. 43, 10821–10830 (2015) Ivančić-Baće I. Cass S.D. Wearne S.J. Bolt E.L. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 43 10821 10830 201510.1093/nar/gkv1213467882626578567 Search in Google Scholar

Nishimasu H., Nureki O.: Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struc Biol. 43, 68–78 (2017) Nishimasu H. Nureki O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struc Biol 43 68 78 201710.1016/j.sbi.2016.11.01327912110 Search in Google Scholar

Amitai G., Sorek R.: CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol. 14, 67–76 (2016) Amitai G. Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14 67 76 201610.1038/nrmicro.2015.1426751509 Search in Google Scholar

eISSN:
2545-3149
Idiomas:
Inglés, Polonais
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology