Cite

Podschun R, Ullmann U. Klebsiellaspp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11(4):589-603. Search in Google Scholar

Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere 2016;1(5):e00261-16. doi: 10.1128/mSphere.00261-16. Search in Google Scholar

Mączyńska B. Ewolucja patogenności i oporności na środki przeciwbakteryjne u pałeczek Klebsiella. Warszawa: Evereth Publishing; 2015. Search in Google Scholar

Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 2012;65(2):350-9. doi: 10.1111/j.1574-695X.2012.00965.x. Search in Google Scholar

Maharjan G, Khadka P, Siddhi Shilpakar G, Chapagain G, Dhungana GR. Catheter-associated urinary tract infection and obstinate biofilm producers. Can J Infect Dis Med Microbiol 2018;2018:7624857. doi: 10.1155/2018/7624857. Search in Google Scholar

Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013;4(2):107-18. doi: 10.4161/viru.22718. Search in Google Scholar

Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80(3):629-61. doi: 10.1128/MMBR.00078-15. Search in Google Scholar

Zamani A, Yousefi Mashouf R, Ebrahimzadeh Namvar AM, Alikhani MY. Detection of magA gene in Klebsiella spp. Isolated from Clinical Samples-Detection of magA. Iran J Basic Med Sci 2013;16(2):173-6. Search in Google Scholar

Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018;8:4. doi: 10.3389/fcimb.2018.00004. Search in Google Scholar

Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Reguerio V, Tomás A, et al. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc Natl Acad Sci USA 2015;112(46):E6369-78. Search in Google Scholar

Murphy CN, Mortensen MS, Krogfelt KA, Clegg S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013;81(8):3009-17. Search in Google Scholar

Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017;65(2):208-15. doi: 10.1093/cid/cix270. Search in Google Scholar

Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014;6:25-64. doi: 10.4137/PMC.S14459. Search in Google Scholar

Stefaniuk E, Suchocka U, Bosacka K, Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur J Clin Microbiol Infect Dis 2016;35(8):1363-9. Search in Google Scholar

Rahman SU, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int 2018;2018:9519718. Search in Google Scholar

Gniadkowski M. Beta-laktamazy u pałeczek Gram-ujemnych. Mikrobiol Med 1997;2:17. Search in Google Scholar

Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, et al. High Prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front Microbiol 2019;9:3198. doi: 10.3389/fmicb.2018.03198. Search in Google Scholar

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25(4):682-707. doi: 10.1128/CMR.05035-11. Search in Google Scholar

Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13(9):785-96. doi: 10.1016/S1473-3099(13)70190-7. Search in Google Scholar

The European Committee on Antimicrobial Susceptibility Testing – EUCAST. Breakpointtables for interpretation of MICs and zonediameters. EUCAST; 2020. https://www.eucast.org (14.06.2023). Search in Google Scholar

Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010;65(3):490-5. Search in Google Scholar

Ma LC, Fang CT, Lee CZ, Shun CT, Wang JT. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis 2005;192(1):117-28. Search in Google Scholar

Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004;199(5):697-705. Search in Google Scholar

Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, et al. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int J Food Microbiol 2008;125(3):230-5. doi: 10.1016/j.ijfoodmicro. 2008.03.005. Search in Google Scholar

Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007;115(12):1400-8. doi: 10.1111/j.1600-0463.2007.00722.x. Search in Google Scholar

Oliver A, Weigel LM, Rasheed JK, McGowan JE Jr, Raney P, Tenover FC. Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 2002;46(12):3829-36. doi: 10.1128/AAC.46.12.3829-3836.2002. Search in Google Scholar

Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 2008;52(4):1413-8. doi: 10.1128/AAC.01103-07. Search in Google Scholar

Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 2011;55(2):934-6. doi: 10.1128/AAC.01247-10. Search in Google Scholar

Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, et al. wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 2013;51(12):4073-8. doi: 10.1128/JCM.01924-13. Search in Google Scholar

Müller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Becker SL. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d’Ivoire. Int J Infect Dis 2020;91:207-9. doi: 10.1016/j. ijid.2019.11.024. Search in Google Scholar

Wang Y, Zhang Q, Jin Y, Jin X, Yu J, Wang K. Epidemiology and antimicrobial susceptibility profiles of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in China. Braz J Microbiol 2019;50(3):669-75. Search in Google Scholar

Mrowiec P, Klesiewicz K, Małek M, Skiba-Kurek I, Sowa-Sierant I, Skałkowska M, et al. Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol 2019;42(4):197-204. Search in Google Scholar

Lev AI, Astashkin EI, Kislichkina AA, Solovieva EV, Kombarova TI, Korobova OV, et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health 2018;112(3):142-51. doi: 10.1080/20477724.2018.1460949. Search in Google Scholar

Dehshiri M, Khoramrooz SS, Zoladl M, Khosravani SA, Parhizgari N, Motazedian MH, et al. The frequency of Klebsiella pneumonia encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum beta lactamases enzymes isolated from urinary tract infection. Ann Clin Microbiol Antimicrob 2018;17(1):4. doi: 10.1186/s12941-018-0256-y. Search in Google Scholar

Mahmoudi S, Pourakbari B, Rahbarimanesh A, Abdosalehi MR, Ghadiri K, Mamishi S. An Outbreak of ESBL-producing Klebsiella pneumoniae in an Iranian Referral Hospital: Epidemiology and Molecular Typing. Infect Disord Drug Targets 2019;19(1):46-54. doi: 10.2174/18715265186661 80507121831. Search in Google Scholar

Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 β-lactamasegene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One 2014;9(3):e91800. Search in Google Scholar

Mączyńska B, Neumann K, Junka A, Smutnicka D, Secewicz A, Bartoszewicz M, et al. Analiza cech warunkujących selekcję i przeżywalność w środowisku szpitalnym u szczepów Klebsiella izolowanych z ognisk epidemicznych. Forum Zakażeń 2013;4(2):77-97. Search in Google Scholar

Abayneh M, Tesfaw G, Abdissa A. Isolation of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli and Klebsiella pneumoniae from patients with community-onset urinary tract infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can J Infect Dis Med Microbiol 2018;2018:4846159. doi: 10.1155/2018/4846159. Search in Google Scholar

Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G. Prevalence of blaTEM, blaSHV and blaCTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol 2014;57(2):249-54. doi: 10.4103/0377-4929.134698. Search in Google Scholar

Gao H, Liu Y, Wang R, Wang Q, Jin L, Wang H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine 2020;51:102599. doi: 10.1016/j.ebiom.2019.102599. Search in Google Scholar

Apondi OE, Oduor OC, Gye BK, Kipkoech MK. High prevalnece of multi-drug resistant Klebsiella pneumoniae in a tertiary teaching hospital in western Kenya. Afr J Infect Dis 2016;10(2):89-95. Search in Google Scholar

Singh SK, Mishra M, Sahoo M, Patole S, Sahu S, Misra SR, et al. Antibiotic resistance determinants and clonal relationships among multidrug-resistant isolates of Klebsiella pneumoniae. Microb Pathog 2017;110:31-6. Search in Google Scholar

Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G, Hoelscher M, et al. Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect Dis 2018;18(1):524. doi: 10.1186/s12879-018-3436-7. Search in Google Scholar

Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM- 1): towards a new pandemia? Clin Microbiol Infect 2010;16(12):1699-701. doi: 10.1111/j.1469-0691.2010.03385.x. Search in Google Scholar

Xiang T, Chen C, Wen J, Liu Y, Zhang Q, Cheng N, et al. Resistance of Klebsiella pneumoniae strains carrying blaNDM-1 gene and the genetic environment of blaNDM-1. Front Microbiol 2020;11:700 Search in Google Scholar

Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol 2019;37(2):210-8. doi: 10.4103/ijmm.IJMM_19_157. Search in Google Scholar

El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris) 2013;61(5):209-16. doi: 10.1016/j.patbio.2012.10.004. Search in Google Scholar

Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol 2015;62(4):867-74. doi: 10.18388/abp.2015_1148. Search in Google Scholar

Zhang S, Yang G, Ye Q, Wu Q, Zhang J, Huang Y. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front Microbiol 2018;9:289. doi: 10.3389/fmicb.2018.00289. Search in Google Scholar

Rastegar S, Moradi M, Kalantar-Neyestanaki D, Ali Golabi D, Hosseini-Nave H. Virulence factors, capsular serotypes and antimicrobial resistance of hypervirulent Klebsiella pneumoniaeand classical Klebsiella pneumoniae in southeast Iran. Infect Chemother 2019. doi: 10.3947/ic.2019.0027. Search in Google Scholar

Krawczyk B, Śledzińska A, Szemiako K. Charakterystyka izolatów Escherichia coli z krwi hematologicznych dorosłych pacjentów z bakteriemią: translokacja z jelit do krwi wymaga współdziałania wielu czynników wirulencji. Eur J Clin Microbiol Infect Dis 2015;34:1135-43. Search in Google Scholar

Kuş H, Arslan U, Türk Dağı H, Fındık D. Investigation of various virulence factors of Klebsiella pneumoniae strains isolated from nosocomial infections. Mikrobiyol Bul 2017;51(4):329-39. doi: 10.5578/mb.59716. Search in Google Scholar

Jun JB. Klebsiella pneumoniae liver abscess. Infect Chemother 2018;50(3):210-8. doi: 10.3947/ic.2018.50.3.210. Search in Google Scholar

eISSN:
2719-6313
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health