Acceso abierto

J-class abelian semigroups of matrices on ℝn


Cite

Introduction

Let Mn(ℝ) be the set of all square matrices over ℝ of order n ≥ 1 and by GL(n, ℝ) the group of invertible matrices of Mnℝ. Let G be a finitely generated abelian sub-semigroup of Mn(ℝ). By a sub-semigroup of Mn(ℝ), we mean a subset which is stable under multiplication and contains the identity matrix. For a vector v ∈ ℂn, we consider the orbit of G through v: G(v) = {Av: AG}⊂ ℝn. A subset E ⊂ ℝn is called G-invariant if A(E) ⊂ E for any A ∈ G. The orbit G(v)⊂ ℝn is dense in ℝn if G(v)¯=n $\overline{G(v)}= {\mathbb{R}}^{n}$ , where Ē denotes the closure of a subset E⊂ ℝn. The semigroup G is called hypercyclic if there exists a vector v ∈ℝn such that G(v) is dense in ℝn. We refer the reader to the recent books [4] and [9] for a thorough account on hypercyclicity. In [7], [8], Costakis and Manoussos localized the notion of hypercyclicity through the use of the J-sets, firstly for a single bounded linear operator T acting on a complex Banach space X, and secondly extended to that of semigroup. Recall that T is called a J-class operator if for every non-zero vector x in X and for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X, there exists a positive integer n such that Tn(U) ∩ V = ∅. Recently, there are much research that study or use J-class operators, We mention for instance, the series of papers by Azimi and Müller [3], Nasseri [10], Chan and Seceleanu [5]. Among properties, there are locally hypercyclic, non hypercyclic operators and that finite dimensional Banach spaces do not admit locally hypercyclic operators (see [7]).

In [8], Costakis and Manoussos extend the notion of J-class operator to that of a J-class of semigroup G as follows: Suppose that G is generated by p matrices A1,…, Ap(p ≥ 1) then we define the extended limit set JG(x) of x under G to be the set of y ∈ ℝn for which there exists a sequence (xm)m ⊂ ℝn and sequences of non-negative integers {km(j):m} $\{k^{(j)}_{m}:\ m\in \mathbb{N}\}$ for j = 1, 2,…, p with km(1)+km(2)++km(p)+ $k^{(1)}_{m}+k^{(2)}_{m}+\dots + k^{(p)}_{m}\to+\infty$ such that xm → x and A1km(1)A2km(2)Apkm(p)xmy $A_{1}^{k^{(1)}_{m}}A_{2}^{k^{(2)}_{m}}\dots A_{p}^{k^{(p)}_{m}}x_{m}\to y$ .

This describes the asymptotic behavior of the orbits of nearby points to x. Note that the condition km(1)+km(2)++km(p)+ $\ k^{(1)}_{m} + k^{(2)}_{m}+\dots+ k^{(p)}_{m}\to+\infty$ is equivalent to having at least one of the sequences {km(j):m} $\{k^{(j)}_{m}:\ m\in\mathbb{N}\}$ for j = 1, 2,…, p containing an increasing subsequence tending to +∞. We say that G is locally hypercyclic (or J-class) if there exists a vector v ∈ ℝn\{0} such that JG(v) = ℝn. This notion is a “localization” of the concept of hypercyclicity, this can be justified by the following: JG(x) = ℝn if and only if for every open neighborhood Ux ⊂ ℝn of x and every nonempty open set V ⊂ ℝn there exists A ∈ G such that A(Ux)∩ V≠∅.

As we have mentioned above, in ℂn or ℝn, no matrix can be locally hypercyclic. However, what is rather remarkable is that in ℂn or ℝn, a pair of commuting matrices exists which forms a locally hypercyclic, non-hypercyclic semigroup (see [8]).

In the present work, we show that G is hypercyclic if and only if there exists a vector v in an open set V, defined according to the structure of G, such that JG(v) = ℝn (Theorem 1). This answer the question 1 raised by the author in [2]. Furthermore, we construct for every n ≥ 2, a locally hypercyclic abelian semigroup G generated by matrices A1,…, An+1 which is non-hypercyclic whenever JG(uk) = ℝn, k = 1,…, n, for a basis (u1,…, un) of ℝn (Theorem 4), this answers negatively the question raised by Costakis and Manoussos in [8]. However, we prove that the question is true (see Proposition 5) for any abelian semigroup G consisting of lower triangular matrices on ℝn with all diagonal elements equal.

Before stating our main results, let introduce the following notations and definitions.

Set ℕ be the set of non negative integers and write ℕ0 = ℕ\{0}. Let n ∈ ℕ0 be fixed. Denote by:

ℬ; = (e1,..., e1) the canonical basis of ℝn.

In the identity matrix on ℝn.

For each m = 1, 2,…, n, denote by:

Tm() $\mathbb{T}_{m}(\mathbb{R})$ the set of matrices over ℝ of the form:

[μ0a2,1am,1am,m1μ]$$ \begin{equation}\left[\begin{array}{cccc} \mu & \ & \ & 0 \\ a_{2,1} & \ddots & \ & \ \\ \vdots & \ddots & \ddots & \ \\ a_{m,1} & \dots & a_{m,m-1} & \mu \end{array} \right] \end{equation} $$

𝕊; the set of matrices over ℝ of the form

[αββα]$$ \begin{equation}\begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \\ \end{bmatrix} \end{equation} $$

For each 1mn2 $1\leq m\leq \frac{n}{2}$ , denote by

Bm() $\mathbb{B}_{m}(\mathbb{R})$ the set of matrices of M2m(ℝ) of the form

[C0C2,1CCm,1Cm,m1C]:C,Ci,jS,2im,1jm1$$ \begin{equation}\begin{bmatrix} C & & & 0 \\ C_{2,1} & C & & \\ \vdots & \ddots & \ddots & \\ C_{m,1} & \dots & C_{m,m-1} & C \end{bmatrix}: \ C, \ C_{i,j}\in \mathbb{S}, \ 2\leq i\leq m, 1\leq j\leq m-1 \end{equation} $$

Let r, s ∈ ℕ. By a partition of n we mean a finite sequence of positive integers

η={(n1,,nr;m1,,ms)ifrs0,(m1,,ms)ifr=0,(n1,,nr)ifs=0$$ \begin{equation}\eta = \begin{cases} (n_{1},\dots,n_{r};\ m_{1},\dots,m_{s}) & \textrm{if} rs\neq 0, \\ (m_{1},\dots,m_{s}) & \textrm{if} r= 0, \\ (n_{1},\dots,n_{r}) & \textrm{if} s=0 \end{cases} \end{equation} $$

such that (n1+…+ nr) +2(m1+…+ ms) = n. In particular, we have r + 2s ≤ n. The number r + 2s will be called the length of the partition.

Given a partition η = (n1,…, nr; m1,…, ms), denote by:

Kη():=Tn1()Tnr()Bm1()Bms() $\mathscr{K}_{\eta}(\mathbb{R}): = \mathbb{T}_{n_{1}}(\mathbb{R})\oplus\dots \oplus \mathbb{T}_{n_{r}}(\mathbb{R})\oplus \mathbb{B}_{m_{1}}(\mathbb{R})\oplus\dots \oplus \mathbb{B}_{m_{s}}(\mathbb{R})$ .

Kη*():=Kη()GL(n,) $\mathscr{K}^{*}_{\eta}(\mathbb{R}): = \mathscr{K}_{\eta}(\mathbb{R})\cap \textrm{GL}(n, \ \mathbb{R})$ , it is a sub-semigroup of GL(n, ℝ). In particular:

If r = 1, s = 0 then Kη()=Tn() $\mathscr{K}_{\eta}(\mathbb{R}) = \mathbb{T}_{n}(\mathbb{R})$ and η = (n).

If r = 0, s = 1 then Kη()=Bm() $\mathscr{K}_{\eta}(\mathbb{R}) = \mathbb{B}_{m}(\mathbb{R})$ and η = (m), n = 2m.

If r = 0, s = 1 then Kη()=Bm1()Bms() $\mathscr{K}_{\eta}(\mathbb{R}) = \mathbb{B}_{m_{1}}(\mathbb{R})\oplus\dots\oplus\mathbb{B}_{m_{s}}(\mathbb{R})$ and η = (m1,…, ms).

For a row vector v ∈ ℝn, we will be denoting by vT the transpose of v.

uη = [eη,1,…,eη,r; fη,1,…,fη,s]T ∈ ℝn, where for every k = 1,…, r; l = 1,…, s, eη,k = [1,0,…, 0]T ∈ ℝnk, fη,l=[1,0,,0]T2ml $f_{\eta,l} = [1,0,\dots, 0]^{T}\in \mathbb{R}^{2m_{l}}$ .

We let

U:=rk=1(*×nk1)×sl=1((2\{(0,0)})×2ml2).$$ \begin{equation}U := \underset{k=1}{\overset{r}{\prod}}(\mathbb{R}^{*}\times\mathbb{R}^{n_{k}-1})\times \underset{l=1}{\overset{s}{\prod}}\left((\mathbb{R}^{2}\backslash\{(0,0)\})\times\mathbb{R}^{2m_{l}-2}\right). \end{equation} $$

It is plain that U is open and dense in ℝn.

Let G be an abelian sub-semigroup of Mn(ℝ), we have the following “normal form of G”:

There exists a P ∈ GL(n, ℝ) such that P1GPKη() $P^{-1}GP\subset \mathscr{K}_{\eta}(\mathbb{R})$ for some partition η of n (see Proposition 6).

Given two integers r, s ∈ ℕ, we shall say that the semigroup G has “a normal form of length r + 2s” if G has a normal form in 𝒦η(ℝ) for some partition η with length r + 2s. For such a choice of matrix P, we let:

vη = Puη.

V = P(U), it is a dense open set in ℝn.

Our principal results are the following:

Theorem 1

LetG be a finitely generated abelian semigroup of matrices onn. If JG(v) = ℝnfor somev ∈ VthenG(vη)¯=n $\overline{G(v_{\eta})} = \mathbb{R}^{n}$ .

Corollary 2

Under the hypothesis of Theorem 1, the following are equivalent:

G is hypercyclic.

JG(vη) = ℝn.

G(vη)¯=n $\overline{G(v_{\eta})} = \mathbb{R}^{n}$ .

Corollary 3

Under the hypothesis of Theorem 1, assume that G is not hypercyclic. Then

E:={xn:JG(x)=n}rk=1Hksl=1Fl,(r+2sn)$$ \begin{equation}E: = \{x\in \mathbb{R}^{n}: J_{G}(x)= \mathbb{R}^{n}\}\subset \underset{k=1}{\overset{r}{\cup}}H_{k}\cup \underset{l=1}{\overset{s}{\cup}}F_{l}, \ (r+2s\leq n) \end{equation} $$

, where Hk (resp. Fl) are G-invariant vector subspaces ofnof dimension n − 1 (resp. n − 2).

Remark

If n = 1, then vη = 1 and by Corollary 2, a sub-semigroup G of ℝ is hypercylic if and only if it is locally hypercyclic.

Theorem 4

Let n ≥ 2 be an integer. Then there exists an abelian semigroup G generated by diagonal matricesA1, …,An+1GL(n,ℝ) which is not hypercyclic such that JG(ek) = for every k = 1,…, n.

Proposition 5

Let G be a finitely generated abelian sub-semigroup ofTn() $\mathbb{T}_{n}(\mathbb{R})$ . If there exists a basis (e1,…,enofnsuch that JG(ek) = ℝnfor everyk = 1,…, n, thenGis hypercyclic.

Notation and some results

Recall first the following proposition.

Proposition 6

([1], Proposition 2.2) Let G be an abelian sub-semigroup of Mn(ℝ). Then there exists a PGL(n, ℝ) such thatP−1GPis an abelian sub-semigroup of𝒦η(ℝ), for some partitionηofn.

Notation.

If G is a sub-semigroup of Tn(K) $\mathbb{T}_{n}(\mathbb{K})$ (K= $(\mathbb{K} = \mathbb{R}$ or ℂ, denote by FG=vect({(BμBIn)eiKn:1in1,BG}) $$F_{G} = \textrm{vect}\big(\{(B - \mu_{B}I_{n})e_{i}\in \mathbb{K}^{n}: \ 1\leq i\leq n-1, \ B\in G\}\big)$$

the vector subspace generated by the family of vectors {(B − μBIn)ei ∈ K;n : 1 ≤ in − 1 , BG}.

- rank(FG) the rank of FG. We have rank(FG) ≤ n − 1.

If G is an abelian sub-semigroup of Bm() $\mathbb{B}_{m}(\mathbb{R})$ , (n = 2m), denote by:

FG=vect({(B˜CIn)ein:1in1,B˜G})$$ F_{G} = \textrm{vect}\left(\{(\widetilde{B} - CI_{n})e_{i}\in \mathbb{R}^{n}: \ 1\leq i\leq n-1, \ \widetilde{B}\in G\}\right)$$

where

B˜=[C0C2,1CCm,1Cm,m1C]:C,Ci,jS,i=2,,m,j=1,,m1.$$ \begin{equation}\widetilde{B} = \begin{bmatrix} C & & & 0 \\ C_{2,1} & C & & \\ \vdots & \ddots & \ddots & \\ C_{m,1} & \dots & C_{m,m-1} & C \end{bmatrix}: \ C, \ C_{i,j}\in \mathbb{S}, \ i=2, \dots, m, j=1, \dots, m-1. \end{equation} $$

If G is an abelian sub-semigroup of 𝒦n(ℝ), then for every B𝒦η(ℝ), we have B=diag(B1,,Br;B˜1,,B˜s) $B = \textrm{diag}(B_{1},\dots, B_{r}; \ \widetilde{B_{1}},\dots,\widetilde{B_{s}})$ with BkTnk() $B_{k}\in\mathbb{T}_{n_{k}}(\mathbb{R})$ , B˜lBml() $\widetilde{B_{l}}\in\mathbb{B}_{m_{l}}(\mathbb{R})$ , k = 1,…, r, l = 1,…, s. Denote by:

Gk = {Bk : B ∈ G}, k = 1,…, r, it is an abelian sub-semigroup of Tnk() $\mathbb{T}_{n_{k}}(\mathbb{R})$ .

G˜l={B˜l:BG} $\widetilde{G}_{l} = \{\widetilde{B_{l}}\ : \ B\in G\}$ , l = 1,…, s, it is an abelian sub-semigroup of Bml() $\mathbb{B}_{m_{l}}(\mathbb{R})$ .

For every x=[x1,,xr;x˜1,,x˜s]Tn $x = [x_{1},\dots,x_{r}; \widetilde{x_{1}},\dots,\widetilde{x_{s}}]^{T}\in \mathbb{R}^{n}$ , where xk=[ak,1,,ak,nk]T*×nk1 $x_{k} = [a_{k,1},\dots, a_{k,n_{k}}]^{T}\in\mathbb{R}^{*}\times\mathbb{R}^{n_{k}-1}$ , x˜l=[bl,1,,bl,ml]T(2\{(0,0)})×2ml2 $\widetilde{x_{l}} = [b_{l,1},\dots, b_{l,m_{l}}]^{T}\in(\mathbb{R}^{2}\backslash\{(0,0)\})\times\mathbb{R}^{2m_{l}-2}$ , we let:

Hxk=xk+FGk $H_{x_{k}} = \mathbb{R}x_{k}+F_{G_{k}}$ , k = 1,…, r.

H˜x˜l=Cx˜l+FG˜l $\widetilde{H}_{\widetilde{x_{l}}} = \mathcal{C}\widetilde{x_{l}} + F_{\widetilde{G}_{l}}$ , l = 1,…, s, where C={diag(C,,C):CS} $\mathcal{C}= \{\textrm{diag}(C,\dots, C): \ C\in \mathbb{S}\}$ .

Hx=rk=1Hxksl=1H˜x˜l $H_{x} = \underset{k=1}{\overset{r}{\bigoplus}}H_{x_{k}} \bigoplus \underset{l=1}{\overset{s}{\bigoplus}}\widetilde{H}_{\widetilde{x_{l}}}$ .

We start with the following lemmas:

Lemma 7

LetGbe an abelian sub-semigroup of 𝒦η(ℝ). Under the notations above, for everyx ∈ ℝn, Hx is G-invariant.

Proof

It suffices to prove that Hxk $H_{x_{k}}$ is Gk-invariant (resp. H˜x˜l $\widetilde{H}_{\widetilde{x_{l}}}$ is G˜l $\widetilde{G}_{l}$ -invariant): write for short G = Gk and x = xk (resp. G=G˜l $G = \widetilde{G}_{l}$ and x=x˜l) $x = \widetilde{x_{l}})$ . One has Hx = ℝx (resp. H˜x=Cx+FG) $\widetilde{H}_{x} = \mathcal{C}x + F_{G})$ .

- If w = [w1,…, wn]T ∈ Hx and B ∈ G with eigenvalue μ ∈ ℝ, then Bw=μw+(BμIn)w=μw+n1i=1wk(BμIn)eiHx $Bw = \mu w+(B-\mu I_{n})w = \mu w+\underset{i=1}{\overset{n-1}{\sum}}w_{k}(B-\mu I_{n})e_{i}\in H_{x}$ (since w, (Bμ In)ei ∈ Hx and Hx is a vector space).

- If w˜=[w˜1,,w˜s]TH˜x $\widetilde{w} = [\widetilde{w_{1}},\dots,\widetilde{w_{s}}]^{T}\in \widetilde{H}_{x}$ and B ∈ G, then we have Bw˜=Cw˜+(BCIn)w˜=Cw˜+n1i=1w˜k(BCIn)eiH˜x $B\widetilde{w} = C\widetilde{w}+ (B- C I_{n})\widetilde{w} = C \widetilde{w} + \underset{i=1}{\overset{n-1}{\sum}}\widetilde{w_{k}}(B- C I_{n})e_{i}\in \widetilde{H}_{x}$ (since Cw˜,(BCIn)eiH˜x $C\widetilde{w}, \ (B-C I_{n})e_{i}\in \widetilde{H}_{x}$ and H˜x $\widetilde{H}_{x}$ is a vector space).

Proposition 8

Let G be an abelian sub-semigroup of 𝒦η(ℝ). If JG(u) = ℝnfor someu ∈ U, then rank(FGk) = nk − 1 and rank(FG˜l)=2ml2 $\mathrm{rank}(F_{\widetilde{G}_{l}}) = 2m_{l}-2$ , for everyk = 1,…, r; l = 1,…, s.

Proof

Let u=[u1,,ur;u˜1,,u˜s]Tn $u = [u_{1},\dots,u_{r}; \ \widetilde{u_{1}},\dots, \widetilde{u_{s}}]^{T}\in \mathbb{R}^{n}$ , where uknk $u_{k}\in \mathbb{R}^{n_{k}}$ , u˜l2ml $\widetilde{u_{l}}\in \mathbb{R}^{2m_{l}}$ , for every k = 1,…, r; l = 1,…, s.

i) First, we will show that JGk(uk)=nk $J_{G_{k}}(u_{k}) = \mathbb{R}^{n_{k}}$ andJG˜l(u˜l)=2ml $J_{\widetilde{G}_{l}}(\widetilde{u_{l}}) = \mathbb{R}^{2m_{l}}$ . For this, let xknk $x_{k}\in \mathbb{R}^{n_{k}}$ , x˜l2ml $\widetilde{x_{l}}\in \mathbb{R}^{2m_{l}}$ and set y=[y1,,yr;y˜1,,y¯s]Tn $y = [y_{1},\dots,y_{r};\widetilde{y_{1}},\dots,\widetilde{y_{s}}]^{T}\in \mathbb{R}^{n}$ such that

yi={0ni,ifikxk,ifi=k.$$ y_{i} = \begin{cases} 0\in \mathbb{R}^{n_{i}}, & \textrm{if } \ i\neq k\\ x_{k}, & \textrm{if } \ i= k. \end{cases}$$

and

yi={0ni,ifikxk,ifi=k.$$ \widetilde{y_{l}} = \begin{cases} 0\in \mathbb{R}^{2m_{l}}, & \textrm{if } \ i\neq l\\ \widetilde{x_{l}}, & \textrm{if } \ i= l. \end{cases}$$

As JG(u) = ℝn, there exist two sequences (zm)m ⊂ ℝn and (Bm)mG such that

limm+zm=uandlimm+Bmzm=y.$$ \begin{equation}\underset{m\to +\infty}\lim z_{m} = u\ \ \ \textrm{and} \ \ \ \underset{m\to +\infty}\lim B_{m}z_{m} =y.\ \ \ \ \ \ \ \end{equation} $$

Write zm=[zm,1,,zm,r;zm,1˜,,zm,s˜]T ${z_m} = {[{z_{m,1}}, \ldots ,{z_{m,r}};\;\widetilde {{z_{m,1}}}, \ldots ,\,\widetilde {{z_{m,s}}}]^T}$ with zm,knkzm,l˜2ml \[{z_{m,k}} \in {\mathbb{R}^{{n_k}}}{\text{ }}\widetilde {{z_{m,l}}} \in {\mathbb{R}^{2{m_l}}}\] , and Bm=diag(Bm,1,,Bm,r;Bm,1˜,,Bm,s˜) $B_{m} = \textrm{diag}(B_{m,1},\dots, B_{m,r}; \ \widetilde{B_{m,1}},\dots,\widetilde{B_{m,s}})$ with Bm,kTnk()Bm,l˜Bml()k=1,,r,l=1,,s $B_{m,k}\in\mathbb{T}_{n_{k}}(\mathbb{R}) \widetilde{B_{m,l}}\in\mathbb{B}_{m_{l}}(\mathbb{R}) k=1,\dots,r, l=1,\dots,s$ .

By (2), we have

limm+zm,k=uk,limm+zm,l˜=ul˜$$\underset{m\to +\infty}\lim z_{m,k} = u_{k}, \ \underset{m\to +\infty}\lim \widetilde{z_{m,l}} = \widetilde{u_{l}}$$

and

limm+Bm,kzm,k=yk=xk,limm+Bm,l˜zm,l˜=yl˜=xl˜.$$\underset{m\to +\infty}\lim B_{m,k}z_{m,k}=y_{k}=x_{k}, \ \underset{m\to +\infty}\lim \widetilde{B_{m,l}} \widetilde{z_{m,l}} = \widetilde{y_{l}}= \widetilde{x_{l}}.$$

Therefore xkJGk(uk) and xl˜JGl˜(ul˜) $\widetilde{x_{l}}\in J_{\widetilde{G}_{l}}(\widetilde{u_{l}})$ . It follows that JGk(uk) = ℝnk and JGl˜(ul˜)=2ml$J_{\widetilde{G}_{l}}(\widetilde{u_{l}})= \mathbb{R}^{2m_{l}}$.

ii) Second, one can then suppose that G ⊂ 𝕋n(ℝ) and u ∈ ℝ* × ℝn – 1 (resp. G ⊂ 𝔹m(ℝ) and u ∈ (ℝ2\{(0, 0)}) × ℝ2m – 2. It is clear that uFG.

Assume that G ⊂ 𝕋n(ℝ). By Lemma 7, He1 = ℝe1 + FG is G-invariant.

Suppose that ℝn\He1 ≠ Ø, so there exist y ∈ ℝn\He1 and two sequences (xm)m ⊂ ℝn and (Bm)mD such that limm+xm=e1 $\underset{m\to +\infty}\lim x_{m}=e_{1}$ and limm+Bmxm=y $\underset{m\to +\infty}\lim B_{m}x_{m}=y$ . Let Hxm = ℝxm + FG for every m ∈ ℕ. By Lemma 7, Hxm is G-invariant, so Bmxm, for every m ∈ ℕ. Write Bmxm = αmxm + zmαm ∈ ℝ and zmFG. We distinguish two cases:

If (αm)m is bounded, one can suppose by passing to a subsequence, that (αm)αm ≥ 1 is convergent, say limm+αm=a $\underset{m\to +\infty}\lim \alpha_{m} = a\in\mathbb{R}$ . It follows that limm+zm=yauFG $\underset{m\to +\infty}\lim z_{m} = y-au\in F_{G}$ and so yHe1, a contradiction.

If (αm)m is not bounded, one can suppose by passing to a subsequence, that limm+|αm|=+ $\underset{m\to +\infty}\lim|\alpha_{m}| = +\infty$ , then limm+1αmzm=uFG $\underset{m\to +\infty}\lim \frac{1}{\alpha_{m}}z_{m} = -u\in F_{G}$ , a contradiction. We conclude that He1 = ℝn and so dim (FG) = n – 1.

Assume that G ⊂ 𝔹m(ℝ) (n = 2m). By Lemma 7, He1 = 𝒞e1 + FG is G-invariant. Suppose that ℝn\He1 ≠ Ø and let y ∈ ℝn\He1. Then there exist two sequences (xk)k ⊂ ℝn and (Bk)kG such that limk+xk=e1 $\underset{k\to +\infty}\lim x_{k} = e_{1}$ and limk+Bkxk=y $\underset{k\to +\infty}\lim B_{k}x_{k}=y$ . Let Hxk = 𝒞xk + FG for every k ∈ ℕ. By Lemma 7, Hxk is G-invariant, so BkxkHxk, for every k ∈ ℕ. Write Bkxk = Ckxk + zk, with Ck = diag (Rk,..., Rk), Rk=[αkβkβkαk], $R_{k}=\begin{bmatrix} \alpha_{k} & \beta_{k} \\ -\beta_{k} & \alpha_{k} \\ \end{bmatrix},$ , and zkFG. Take ||Ck|| = ||Rk|| = sup(|αk|, |βk|). We distinguish two cases:

If (||Ck||)k is bounded, one can suppose by passing to a subsequence, that (αk)k and (βk)k converge, say limk+αk=α $\underset{k\to +\infty}\lim \alpha_{k} = \alpha\in\mathbb{R}$ and limk+βk=β $\underset{k\to +\infty}\lim \beta_{k} = \beta\in\mathbb{R}$ . As limk+Cke1=αe1βe2=Ce1 $\underset{k\to +\infty}\lim C_{k}e_{1}= \alpha e_{1}-\beta e_{2}=Ce_{1}$ , where C = diag(R,..., R) with R=[αββα], $R=\begin{bmatrix} \alpha& \beta \\ -\beta & \alpha \\ \end{bmatrix},$ and as Bkxk = Ckxk = Ck(xke1) + Cke1 + zk, then limk+zk=yCe1FG $\underset{k\to +\infty}\lim z_{k} = y-Ce_{1}\in F_{G}$ and therefore yCe1 + FGHe1, a contradiction.

If (||Ck||)k is not bounded, one can suppose by passing to a subsequence, that limk+Ck=+ $\underset{k\to +\infty}\lim\|C_{k}\| = +\infty$ , then Ck is invertible for k large, so from Bkxk = Ckxk = Ck(xke1) + Cke1 + zk, we have 1CkCke1+limk+1Ckzk=0 $ \frac{1}{\|C_{k}\|}C_{k}e_{1}+ \underset{k\to +\infty}\lim \frac{1}{\|C_{k}\|}z_{k} = 0$ . In particular, we get limk+αkCk=limk+βkCk=0 $\underset{k\to +\infty}\lim \frac{\alpha_{k}}{\|C_{k}\|} = \underset{k\to +\infty}\lim \frac{\beta_{k}}{\|C_{k}\|}=0$ , this is a contradiction with ||Ck|| (|αk|, |βk|).

We conclude that He1 = ℝn and so dim (FG) = n – 1.

Proof of Theorem 1, Corollaries 2 and 3
Lemma 9.

LetGbe an abelian sub-semigroup of 𝕋n(𝕂) (𝕂= ℝ or 𝕔) such that rank (FG) = n – 1. Let u, ∈ 𝕂* × 𝕂n – 1. If two sequences (um}m∈ℕin 𝕂* × 𝕂n – 1 and (Bm)m∈ℕinGsuch thatlimm+um=u $\underset{m\to+\infty}\lim u_{m} = u$ and limm+Bmum=v $\underset{m\to+\infty}\lim B_{m}u_{m} = v$ then (Bm)m∈ℕis bounded.

Proof

The proof is down in ([2], Lemma 3.4) if K= $\mathbb{K}= \mathbb{C}$ and the same proof works if K= $\mathbb{K}= \mathbb{R}$ .

Now consider the following basis change:

Assume that n = 2m, m ∈ ℕ0. For every k = 1, …, m, we let:

ek=e2k1ie2k2 $e^{\prime}_{k} = \frac{e_{2k-1}-ie_{2k}}{2}$ and C0=(e1,,em,e1¯,,em¯) $\mathscr{C}_{0} = (e^{\prime}_{1},\dots,e^{\prime}_{m}, \ \overline{e^{\prime}_{1}},\dots,\overline{e^{\prime}_{m}})$ , where u¯=[z1¯,,zm¯]T $\overline{u}=[\overline{z_{1}},\dots,\overline{z_{m}}]^{T}$ is the conjugate of u = [z1,…, zm]T. Then 𝒞0 is a basis of ℂ2m. Denote by Q ∈ GL(2m, ℂ) the matrix of basis change from ℬ0 to 𝒞0. Then a simple calculation yields that:

Lemma 10

Under the notation above, for everyBBm() $B\in\mathbb{B}_{m}(\mathbb{R})$ , Q1BQ=diag(B1,B1¯) $Q^{-1}BQ = \mathrm{diag}(B^{\prime}_{1},\ \overline{B^{\prime}_{1}})$ , whereB1Tm() $B^{\prime}_{1}\in \mathbb{T}_{m}(\mathbb{C})$ .

Lemma 11

Let G be an abelian sub-semigroup ofBm() $\mathbb{B}_{m}(\mathbb{R})$ such that rank(FG) = 2m − 2. Letv ∈ (ℝ2\{(0,0)}) × ℝ2m−2. If two sequences (um)m∈ℕ ⊂ (ℝ2\{(0,0)}) × ℝ2m−2and (Bm)m∈ℕGsuch thatlimm+um=u $\underset{m\to+\infty}\lim u_{m} = u$ andlimm+Bmum=v $\underset{m\to+\infty}\lim B_{m}u_{m} = v$ then (Bm)m∈ℕis bounded.

Proof

For B ∈ G, we have Q1BQ=diag(B1,B1¯) $Q^{-1}BQ = \textrm{diag}(B^{\prime}_{1},\ \overline{B^{\prime}_{1}})$ , where B1Tm() $B^{\prime}_{1}\in \mathbb{T}_{m}(\mathbb{C})$ . Write G1 = {B1 : BG} and G1¯={B1¯:BG} $\overline{G^{\prime}_{1}} = \{\overline{B^{\prime}_{1}}: B\in G\}$ . Then G1 (resp. G1¯ $\overline{G^{\prime}_{1}}$ ) is an abelian sub-semigroup of Tm() $\mathbb{T}_{m}(\mathbb{C})$ .

First we prove that rank(FG1)=m1 $\textrm{rank}(F_{G^{\prime}_{1}}) = m-1$ . Write C = diag(R,…,R) with R=[αββα] $R = \begin{bmatrix} \alpha& \beta \\ -\beta & \alpha \\ \end{bmatrix}$ and μ = α + iβ. One has

Q1(FG)=vect({(Q1BQQ1CQI2m)Q1ei:1in1,BG})=vect({(diag(B1,B1¯)diag(μIm,μ¯Im))e1:1in1,B1G1})=FG1FG1¯$$ \begin{align*} Q^{-1}(F_{G}) & = \textrm{vect}\left(\{(Q^{-1}BQ-Q^{-1}CQ I_{2m})Q^{-1}e_{i}: 1\leq i\leq n-1, \ B\in G\}\right) \\ & = \textrm{vect}\left(\{(\textrm{diag}(B^{\prime}_{1},\ \overline{B^{\prime}_{1}})-\textrm{diag}(\mu I_{m}, \overline{\mu}I_{m}))e_{i}^{\prime}: 1\leq i\leq n-1, \ B^{\prime}_{1}\in G_{1}^{\prime}\}\right) \\ & = F_{G_{1}^{\prime}}\oplus F_{\overline{G_{1}^{\prime}}} \end{align*} $$

As rank(FG) = 2m−2 then rank (Q−1(FG))= 2m−2 = 2rank(FG1). So rank(FG1) = m − 1.

Second, we let um = Q-1um = [um,1, um,2]T], u′ = Q-1u = [u1, u2]T and v′ = Q-1v = [v1,v2]T, where um,i, ui, vi ∈ ℂm, i = 1, 2. As u, v, um ∈ (ℝ2\{(0,0)}) × ℝ2m−2 then u1, v1, um,1 ∈ ℂ* × ℂm−1. We have limm+um=u $\underset{m\to+\infty}\lim u_{m}^{\prime} = u^{\prime}$ and so limm+um,1=u1 $\underset{m\to+\infty}\lim u_{m,1}^{\prime} = u_{1}^{\prime}$ . Take Bm = Q-1BmQ. By Lemma 10, Bm=diag(Bm,1,Bm,1¯) $B_{m}^{\prime} = \textrm{diag}(B_{m,1}^{\prime},\ \overline{B_{m,1}^{\prime}})$ , where Bm,1Tm() $B_{m,1}^{\prime}\in \mathbb{T}_{m}(\mathbb{C})$ . Then Bm,1G1 and limm+Bmum=v $\underset{m\to+\infty}\lim B_{m}^{\prime}u_{m}^{\prime} = v^{\prime}$ . So limm+Bm,1um,1=v1 $\underset{m\to+\infty}\lim B_{m,1}^{\prime}u_{m,1}^{\prime} = v^{\prime}_{1}$ . By Lemma 9, (Bm,1)m∈ℕ is bounded, so is (Bm)m∈ℕ. We conclude that (Bm)m∈ℕ bounded.

It follows from Lemmas 9 and 11, the following:

Corollary 12

Let G be a finitely generated abelian sub-semigroup of 𝒦η(ℝ). Suppose that rank(FGk) = nk−1, rank(FG˜l)=2ml2 $\mathrm{rank}(F_{\widetilde{G}_{l}})= 2m_{l}-2$ , k = 1,…, r; l = 1,…, s. Ifx, y ∈ Uand two sequences (Bm)m∈ℕGand (xm)m∈ℕ ⊂ ℝnsuch thatlimm+xm=x $\underset{m\to+\infty}\lim x_{m}=x$ andlimm+Bmxm=y $\underset{m\to+\infty}\lim B_{m}x_{m} = y$ then (Bm)m∈ℕis bounded.

Proposition

Let G be a finitely generated abelian sub-semigroup ofMn(ℝ). Then G is hypercyclic if and only ifJG(x) = ℝnfor everyx∈ℝn.

Proof

[Proof of Theorem 1] One can assume, by Proposition 6, that G is a sub-semigroup of 𝒦η(ℝ). Suppose that JG(u) = ℝn. Then by Proposition 8, rank(FGk) = nk−1 and rank(FG˜l)=2ml2 $\mathrm{rank}(F_{\widetilde{G}_{l}})= 2m_{l}-2$ , for every k = 1,…, r; l = 1,…, s. Let y ∈ U, then there exist two sequences (Bm)m∈ℕG and (xm)m∈ℕ ⊂ ℝn satisfying:

limm+xm=uandlimm+Bmxm=y.$$ \begin{equation}\underset{m\to+\infty}\lim x_{m}=u\ \ \ \textrm{and}\ \ \ \underset{m\to+\infty}\lim B_{m}x_{m}=y. \end{equation} $$

So by Corollary 12, (Bm)m∈ℕ is bounded: ||Bm|| ≤ M for some M > 0, where ||·|| is the Euclidean norm on ℝn. Then

Bmuy=BmuBmxm+BmxmyBmuBmxm+BmxmyBmuxm+BmxmyMuxm+Bmxmy$$ \begin{align*} \|B_{m}u-y\|& =\|B_{m}u-B_{m}x_{m}+B_{m}x_{m}-y\|\\ \ & \leq\|B_{m}u-B_{m}x_{m}\| + \|B_{m}x_{m}-y\|\\ \ & \leq \|B_{m}\| \|u-x_{m}\| + \|B_{m}x_{m}-y\|\\ \ & \leq M \|u-x_{m}\| + \|B_{m}x_{m}-y\| \end{align*} $$

Thus limm+Bmu=y $\underset{m\to+\infty}\lim B_{m}u=y$ and so yG(u)¯ $y\in \overline{G(u)}$ . It follows that UG(u)¯ $U\subset\overline{G(u)}$ . Since U¯=n $\overline{U} = \mathbb{R}^{n}$ , we get G(u)¯=n $\overline{G(u)} = \mathbb{R}^{n}$ . □

Proof of Corollary 2. (i)⟹(ii) follows from Proposition 13.

(ii)⟹(iii) results from Theorem 1. (iii)⟹(i) is clear.

Proof of Corollary 3. If G is not hypercyclic then by Theorem 1,

JG(v) ≠ ℝn for any v ∈ V. Thus V ∩ E = ∅ and therefore En\V=P(rk=1Hksl=1Fl) $E\subset\mathbb{R}^{n}\backslash V = P(\underset{k=1}{\overset{r}{\bigcup}}H_{k} \cup \underset{l=1}{\overset{s}{\bigcup}}F_{l})$ , where

Hk:=u=[u1,,ur;u~1,,u~s]TRn;ujRnj,uk{0}×Rnk1,1jkr$$ \begin{equation} H_{k}: = \left\{u = [u_{1},\dots,u_{r};\ \widetilde{u}_{1},\dots,\widetilde{u}_{s}]^{T}\in \mathbb{R}^{n}; \ u_{j}\in \mathbb{R}^{n_{j}}, u_{k}\in\{0\}\times\mathbb{R}^{n_{k}-1}, \ 1\leq j\neq k\leq r \right\} \end{equation} $$

and Fl:=u=[u1,,ur;u~1,,u~s]TRn:u~l{(0,0)}×R2ml2,1ls $F_{l}: =\left\{u=[u_{1},\dots,u_{r};\ \widetilde{u}_{1},\dots,\widetilde{u}_{s}]^{T}\in \mathbb{R}^{n}: \ \widetilde{u}_{l}\in\{(0,0)\}\times\mathbb{R}^{2m_{l}-2}, \ 1\leq l\leq s\right\}$ . □

Proof of Theorem 4 and Proposition 5
Lemma 14

[6], Lemma 2.6]. Leta, b ∈ ℝ with −1 < a < 0, b > 1 andlog|a|logb $\dfrac{\log|a|}{\log b}$ is irrational. Then the set {akbl : k, l ∈ ℕ} is dense in ℝ.

Proof

[Proof of Theorem 4) Consider the abelian sub-semigroup G of GL(n, ℝ) generated by B, A1,…, An, where B = bIn and Ak=diag(1,,1(k1)terms,a,1,1),k=1,,n $A_{k} = \textrm{diag}(\underset{(k-1)-terms}{\underbrace{1,\dots\dots,1}},a,1\dots,1),\ k=1,\dots, n$ . Then G is a sub-semigroup of Kη*() $\mathscr{K}^{*}_{\eta}(\mathbb{R})$ with r = n and η = (1,…, 1). One has uη = [1,…, 1]T.

First, we will show that G is not hypercyclic: for this, it is equivalent to prove, by Corollary 2, that G(uη)¯n $\overline{G(u_{\eta})}\neq \mathbb{R}^{n}$ : We have

G(uη)={[bmak1;bmak2;;bmakn]T:m,k1,,kn}$$ \begin{equation}G(u_{\eta}) = \left\{[b^{m}a^{k_{1}};\ b^{m}a^{k_{2}};\dots\dots;\ b^{m}a^{k_{n}}]^{T}:~ m,k_{1},\dots, k_{n}\in\mathbb{N}\right\} \end{equation} $$

Observe that for every x = [x1,…, xn]T ∈ G(uη), we have x1x2=ak1k2 $\dfrac{x_{1}}{x_{2}}= a^{k_{1}-k_{2}}$ . Since the set {ap:p} $\left\{a^{p} :\ \ p\in \mathbb{Z}\right\}$ is not dense in ℝ, the orbit G(uη) cannot be dense in ℝn.

Second, we will show that JG(e1) = ℝn (the other ek work in the same way). Fix a vector y = [y1, …, yn]T ∈ ℝn such that y1 ≠ 0. By Lemma 14, choose two sequences of positive integers (im)m ∈ℕ and (jm)m∈ℕ with im, jm → +∞ such that limm+aimbjm=y1 $\underset{m\to +\infty}\lim a^{i_{m}}b^{j_{m}}= y_{1}$ . Let x(m)=(1,x2(m),,xn(m)) $x^{(m)} = (1, x^{(m)}_{2},\dots, x^{(m)}_{n})$ with xk(m)=ykaimbjmam $x^{(m)}_{k} = \frac{y_{k}}{a^{i_{m}}b_{j_{m}}a^{m}}$ , k = 2,…, n. Since −1 < a < 0 and y1 ≠ 0, we see that limm+x(m)=e1 $\underset{m\to+\infty}{\lim}x^{(m)}=e_{1}$ . On the other hand, consider Bm:=BjmA1imA2im+mA3im+mAnim+m $B_{m}: = B^{j_{m}}A_{1}^{i_{m}}A_{2}^{i_{m}+m}A_{3}^{i_{m}+m}\dots A_{n}^{i_{m}+m}$ . Then Bmx(m)=[aimbjm,y2,,yn]T $B_{m}x^{(m)} = \left[a^{i_{m}}b^{j_{m}},y_{2},\dots,y_{n}\right]^{T}$ and so, limm+Bmx(m)=y $\underset{m\to+\infty}{\lim}B_{m}x^{(m)}=y$ . We conclude that y ∈ JG(e1) and therefore JG(e1) = ℝn.

Proof of Proposition 5. Since (e1,…,en) is a basis of ℝn, there exists i0 ∈ {1,…, n} such that ℝ* × ℝn−1. As V = U = ℝ* × ℝn−1 and JG(ei0)=n ${\rm J}_{G}(e^{\prime}_{i_{0}}) = \mathbb{R}^{n}$ then by Theorem 1, G(ei0)¯=n $\overline{G(e^{\prime}_{i_{0}})} = \mathbb{R}^{n}$ and hence G is hypercyclic.

eISSN:
2444-8656
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics