Acceso abierto

Maps of Quaternary sediments and features in Austria and neighbouring countries at the scales of 1:500 000 and 1:1 500 000


Cite

Bezák V., Biely A., Elećko M., Konećny V., Mello J., Poćk M., Potfaj M., 2011. A new synthesis of the geological structure of Slovakia – the general geological map at 1: 200 000 scale. Geological Quarterly, 55, 1–8. Search in Google Scholar

Braumann S.M., Schaefer J.M., Neuhuber S.M., Reitner J.M., Lüthgens C., Fiebig M., 2020. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new 10Be chronology, historical records and modern observations. Quaternary Science Reviews, 245, 1–21. https://doi.org/10.1016/j.quascirev.2020.106493 Search in Google Scholar

Braumann S.M., Schaefer J.M., Neuhuber S.M., Lüthgens C., Hidy A.J., Fiebig M., 2021. Early Holocene cold snaps and their expression in the moraine record of the eastern European Alps. Climate of the Past, 17, 2451–2479. https://doi.org/10.5194/cp-17-2451-2021 Search in Google Scholar

Buechi M.W., Lowick S.E., Anselmetti F.S., 2017. Luminescence dating of glaciolacustrine silt in overdeepened basin fills beyond the last interglacial. Quaternar y Geochronology, 37, 55–67. https://doi.org/10.1016/j.quageo.2016.09.009 Search in Google Scholar

Buechi M.W., Graf H., Haldimann P., Lowick S.E., Anselmetti F.S., 2018. Multiple Quaternary erosion and infill cycles in overdeepened basins of the northern Alpine foreland. Swiss Journal of Geosciences, 111, 133–167. https://doi.org/10.1007/s00015-017-0289-9 Search in Google Scholar

Buggle B., Glaser B., Zöller L., Hambach U., Marković S., Glaser I., Gerasimenko N., 2008. Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews, 27, 1058–1075. https://doi.org/10.1016/j.quascirev.2008.01.018 Search in Google Scholar

Česká geologická služba, 2024. WMS service. https://mapy.geology.cz/arcgis/services/Geologie/geologicka_mapa50/MapServer/WMS-Server (accessed in March 2024). Search in Google Scholar

Christ P., Günthert A., Spicher A., 1964. Geologische Generalkarte der Schweiz 1:200 000 Blatt 8 Engadin. Schweizerische Geologische Kommission, Zürich. Search in Google Scholar

Doben K., Dopple G., Freudenberger W., Jerz H., Meyer R., Mielke H., Ott W.-D., Rohrmüller J., Schmidt-Kaler H., Schwerd K., Unger H., 1996. Geologische Karte von Bayern 1:50 0000. Bayerisches Geologisches Landesamt, München. Search in Google Scholar

Draganits E., Weissl M., Zámolyi A., Doneus M., 2022. Lake Neusiedl area: A particular lakescape at the boundary between Alps and Pannonian Basin. In: Embleton-Hamann, C. (ed.) Landscapes and Land-forms of Austria, Springer, 207–222. https://doi.org/10.1007/978-3-030-92815-5_13 Search in Google Scholar

Flügel H.W., Neubauer F.R., 1984. Geologische Karte der Steier-mark 1:200 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.188 Search in Google Scholar

Fuchs W., 1985. Geologische Karte der Republik Österreich 1:50 000 Blatt 79 Neusiedl am See – 80 Ungarisch Altenburg – 109 Pamhagen. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.61 Search in Google Scholar

Geological Institute, University of Bern and Federal Office for Water und Geology, 2005. Geological Map of Switzerland 1:500 000. https://shop.swisstopo.admin.ch/en/maps/geological-maps/geo-maps-500000 (accessed in March 2024). Search in Google Scholar

GeoSphere Austria, 2024. Map service. https://maps.geosphere.at/de (accessed in March 2024). Search in Google Scholar

Gild C., Geitner C., Sanders D., 2018. Discovery of a landscape-wide drape of late-glacial aeolian silt in the western Northern Calcareous Alps (Austria): First results and implications. Geomorphology, 301, 39–52. https://doi.org/10.1016/j.geomorph.2017.10.025 Search in Google Scholar

Götzl G., Poltnig W., Domberger G., Lipiarski P., Bäk R., Letouze G., Lapanje A., Budkovič T., Hribernik K., Rajver D., 2007. Projekt Trans-thermal: Geothermie der Ostalpen – Erfassung und zusammenfassende Darstellung des geothermischen Potenzials in Datenbanken, in einem Geothermieatlas und in GIS – basierten Kartenwerken im Bereich von Kärnten, Steiermark und Slowenien: Nationaler Abschlussbericht für Österreich. Geologische Bundesanstalt, Wien, 156 pp. Search in Google Scholar

Griesmeier G.E.U., Reitner J.M., Le Heron D.P., 2021. The Gröbminger Mitterberg (Austria): A time machine to the pre-LGM? EGU General Assembly Conference Abstracts, 7104. https://doi.org/10.5194/egusphere-egu21-7104 Search in Google Scholar

Groß G., Patzelt G., 2015. The Austrian Glacier Inventory for the Little Ice Age Maximum (GI LIA) in ArcGIS (shapefile) format. In Supplement To: Fischer A., Seiser B., Stocker-Waldhuber M., Mitterer C., Abermann J. Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier iInventory in Austria. The Cryosphere, 9/2, 753–766. https://doi.org/10.5194/tc-9-753-2015 Search in Google Scholar

Häusler H., 2007. Erläuterungen zur Geologischen Karte der Republik Österreich 1:50.000 Blatt 79 Neusiedl am See 80 Ungarisch-Altenburg 109 Pamhagen. Geologische Bundesanstalt, Wien, 88 pp. Search in Google Scholar

Herrmann P., Pahr A., 1988. Erläuterungen zur Geologischen Karte der Republik Österreich 1:50 000 Blatt 138 Rechnitz. Geologische Bundesanstalt, Wien, 40 pp. Search in Google Scholar

Hrvatski geološki institut, 2009. Geološka karta Republike Hrvatske M 1:300.000. Hrvatski geološki institut, Zavod za goelogiju, Zagreb. Search in Google Scholar

Imbrie J., Imbrie K., 1979. Ice Ages: Solving the Mystery. Harvard University Press, Cambridge (Massachusetts), London, 224 pp. Search in Google Scholar

Italian Institute for Environmental Protection and Research, 2024. Map service. https://www.isprambiente.gov.it/en/databases/data-base-collection/soil-and-territory/geological-and-geotematics-map (accessed in March 2024). Search in Google Scholar

Ivy-Ochs S., Schlüchter C., Kubik P., Synal H., Beer J., Kerschner H., 1996. The exposure age of an Egesen moraine at Julier Pass, Switzerand, measured with the cosmogenic radionuclides 10Be, 26Al and 36Cl. Eclogae geologicae Helvatiae, 89, 1049–1063. https://dx.doi.org/10.5169/seals-893680 Search in Google Scholar

Ivy-Ochs S., Kerschner H., Kubik P.W., Schlüchter C., 2006. Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary science, 21, 115–130. https://doi.org/10.1002/jqs.955 Search in Google Scholar

Ivy-Ochs S., Monegato G., Reitner J.M., 2022. The Alps: glacial land-forms from the last glacial maximum. In: Palacios D., Hughes P.D., García-Ruiz J.M., Andrés N. (eds.) European Glacial Landscapes, Elsevier, 449–460. https://doi.org/10.1016/B978-0-12-823498-3.00030-3 Search in Google Scholar

Ivy-Ochs S., Monegato G., Reitner J.M., 2023a. The Alps: glacial land-forms from the Younger Dryas Stadial. In: Palacios D., Hughes P.D., García-Ruiz J.M., Andrés N. (eds.) European Glacial Landscapes, Elsevier, 525–539. https://doi.org/10.1016/B978-0-323-91899-2.00058-9 Search in Google Scholar

Ivy-Ochs S., Monegato G., Reitner J.M., 2023b. The Alps: Glacial land-forms during the deglaciation (18.9–14.6 ka). In: Palacios D., Hughes P.D., García-Ruiz J.M., Andrés N. (eds.) European Glacial Landscapes, Elsevier, 175–183. https://doi.org/10.1016/B978-0-323-91899-2.00005-X Search in Google Scholar

Janke J.R., Bellisario A.C., Ferrando F.A., 2015. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology, 241, 98–121. https://doi.org/10.1016/j.geomorph.2015.03.034 Search in Google Scholar

Kamleitner S., Ivy-Ochs S., Salcher, B., Reitner, J., 2024. Reconstructing basal ice flow patterns of the Last Glacial Maximum Rhine glacier (northern Alpine foreland) based on streamlined subglacial land-forms. Earth Surface Processes and Landforms, 49/2, 746–769. https://doi.org/10.1002/esp.5733 Search in Google Scholar

Kellerer-Pirklbauer A., Lieb G.K., Kleinferchner H., 2012. A new rock glacier inventory of the eastern european alps. Austrian Journal of Earth Sciences, 105/2, 78–93. Search in Google Scholar

Krenmayr H.G., Schnabel W., Bryda G., Egger H., Finger F., Linner M., Mandl G.W., Nowotny A., Pestal G., Reitner J.M., Roetzel R., Rupp C., Schuster R., van Husen D., 2006. Geologische Karte von Oberösterreich 1:200 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.185 Search in Google Scholar

Le Heron, D.P., Griesmeier, G.E.U., Reitner, J.M., 2023. A window into development of a complex ice-marginal lake prior to the Late Glacial Maximum (LGM) in Austria. Geology, 51, 914–918. https://doi.org/10.1130/G51298.1 Search in Google Scholar

Lichtenecker N., 1938. Die gegenwärtige und die eiszeitliche Schneegrenze in den Ostalpen. In: Götzinger G. (ed.) Verhandlungen der 3. Internationalen Quartär-Konferenz, Wien, 141–147. Search in Google Scholar

Maisch M., 1982. Zur Gletscher-und Klimageschichte des alpinen Spätglazials. Geographica Helvetica, 37, 93–104. Search in Google Scholar

Magyarország felszíni földtana, 2024. Map service. https://map.mbfsz.gov.hu/fdt500/ (accessed in March 2024). Search in Google Scholar

Moran A.P., Ivy-Ochs S., Schuh M., Christl M., Kerschner H., 2016. Evidence of central Alpine glacier advances during the Younger Dryas– early Holocene transition period. Boreas, 45, 398–410. https://doi.org/10.1111/bor.12170 Search in Google Scholar

Neuendorf K.K.E., Mehl J.P., Jackson J.A., 2005. Glossary of Geology, 5th Edition ed. American Geological Institute, Virginia. Search in Google Scholar

Neuhuber S., Gier S., Draganits E., Steier P., Bolka M., Ottner F., Spötl C., Hippler D., Meister P., 2024. Radiocarbon ages of microcrystalline authigenic carbonate in Lake Neusiedl (Austria) suggest millennial-scale growth of Mg-calcite and protodolomite. Sedimentology. 71/3, 912–940. https://doi.org/10.1111/sed.13161 Search in Google Scholar

Oberhauser R., Bertle H., Bertle R., 2007. Geologische Karte von Vorarlberg 1:100 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.189 Search in Google Scholar

Obojes U., Spötl C., 2004. Die Pleistozäne Rote Höttinger Breccie bei Innsbruck: eine warmzeitliche Bildung? In: Hubmann B., Piller W. (eds.) PANGEO Austria 2004: „Erdwissenschaften und Öffentlichkeit“ Graz, 24.-26. September 2004: Beitragskurzfassungen, Graz, 298–300. Search in Google Scholar

Ostermann M., Prager C., 2014. Major Holocene rock slope failures in the Upper Inn- and Ötz valley region (Tyrol, Austria). In: Kerschner H., Krainer K., Spötl C. (eds.) From the Foreland to the Central Alps. DEUQUA Excursions, 116–126. Search in Google Scholar

Pánek T., Kapustová V., 2016. Long-Term Geomorphological History of the Czech Republic. In: Panek T., Hradecky J. (eds.) Landscapes and Landforms of the Czech Republic: Cham, Springer International Publishing, 29–39. https://doi.org/10.1007/978-3-319-27537-6_4 Search in Google Scholar

Pascher G.A., Herrmann P., Mandl G.W., Matura A., Nowotny A., Pahr A., Schnabel W., 1999. Geologische Karte des Burgenlandes 1:200 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.187 Search in Google Scholar

Penck A., Brückner E., 1909. Die Alpen im Eiszeitalter: 3 Bände. Tauchnitz, Leipzig, 1199 pp. Search in Google Scholar

Penck A., 1921. Die Höttinger Breccie und die Inntalterrasse nördlich Innsbruck. Abhandlungen der Preußischen Akademie der Wissenschaften, Berlin, 136 pp. Search in Google Scholar

Pestal G., Hejl E., Braunstingl R., Egger H., Linner M., Mandl G.W., Moser M., Reitner J., Rupp C., Schuster R., van Husen D., 2005. Geologische Karte von Salzburg 1:200 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.190 Search in Google Scholar

Prager C., Zangerl C., Patzelt G., Brandner R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Sciences, 8, 377–407. https://doi.org/10.5194/nhess-8-377-2008 Search in Google Scholar

Pulselli R. M., Simoncini E., Ridolfi R., Bastianoni S., 2008. Specific energy of cement and concrete: An energy-based appraisal of building materials and their transport. Ecological indicators, 8/5, 647–656. https://doi.org/10.1016/j.ecolind.2007.10.001 Search in Google Scholar

Raymo M.E., 1997. The timing of major climate terminations. Pale-oceanography, 12, 577–585. https://doi.org/10.1029/97PA01169 Search in Google Scholar

Reitner J.M., 2007. Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quaternary International, 164, 64–84. https://doi.org/10.1016/j.quaint.2006.12.016 Search in Google Scholar

Reitner J.M., 2022. The Imprint of Quaternary Processes on the Austrian Landscape. In: Embleton-Hamann, C. (ed.) Landscapes and Landforms of Austria, Springer, 47–72. https://doi.org/10.1007/978-3-030-92815-5_3 Search in Google Scholar

Reitner J.M., Ivy-Ochs S., Drescher-Schneider R., Hajdas I., Linner M., 2016. Reconsidering the current stratigraphy of the Alpine Lateglacial: Implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quaternary Science Journal, 65, 113–144. https://doi.org/10.3285/eg.65.2.02 Search in Google Scholar

Richter E., 1900. Geomorphologische Untersuchungen in den Hochalpen. Justus Perthes, Gotha, 103 pp. Search in Google Scholar

Rupp C., Linner M., Mandl G., 2011. Geologische Karte von Oberöster-reich 1:200 000: Erläuterungen. Geologische Bundesanstalt, Wien, 255 pp. Search in Google Scholar

Schnabel W., Bryda G., Egger H., Fuchs G., Krenmayr H.G., Mandl G.W., Matura A., Nowotny, A., Roetzel, R., Scharbert, S., Wessely, G., 2002. Geologische Karte von Niederösterreich 1:200 000. Geologische Bundesanstalt, Wien. https://doi.org/10.24341/tethys.186 Search in Google Scholar

Schönlaub, H.P., 2000. Erläuterungen zur Geologischen Karte des Burgenlandes 1:200.000. Geologische Bundesanstalt, Wien, 130 pp. Search in Google Scholar

Sebe K., Roetzel R., Fiebig M., Lüthgens, C., 2015. Pleistocene wind system in eastern Austria and its impact on landscape evolution. Catena, 134, 59–74. https://doi.org/10.1016/j.catena.2015.02.004 Search in Google Scholar

Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., Preusser, F., 2018. Modelling last glacial cycle ice dynamics in the Alps. The Cryo-sphere, 12/10, 3265–3285. https://doi.org/10.5194/tc-12-3265-2018 Search in Google Scholar

Starnberger R., Drescher-Schneider R., Reitner J.M., Rodnight H., Reimer P.J., Spötl C., 2013. Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria). Quaternary Science Reviews, 68, 17–42. https://doi.org/10.1016/j.quascirev.2013.02.008 Search in Google Scholar

Terhorst B., 2013. A stratigraphic concept for Middle Pleistocene Quaternary sequences in Upper Austria. E&G Quaternary Science Journal, 62, 4–13. https://doi.org/10.3285/eg.62.1.01 Search in Google Scholar

Van Husen D., Reitner J.M., 2011. An Outline of the Quaternary Stratigraphy of Austria. E&G Quaternary Science Journal, 60, 366–387. https://doi.org/10.3285/eg.60.2-3.09 Search in Google Scholar

Van Husen D., 1987. Die Ostalpen in den Eiszeiten. Geologische Bundesanstalt, Wien. Search in Google Scholar

Van Husen D., 2004. Quaternary glaciations in Austria. Developments in Quaternary Sciences, Elsevier, 2, 1–13. https://doi.org/10.1016/S1571-0866(04)80051-4 Search in Google Scholar

Van Westen C. J., Castellanos E., Kuriakose S. L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering geology, 102/3–4, 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010 Search in Google Scholar

Vetters H., 1933. Die Geologische Karte der Republik Oesterreich und ihrer Nachbargebiete. Geologische Bundesanstalt, Wien. Search in Google Scholar

Wagner T., Pleschberger R., Kainz S., Ribis M., Kellerer-Pirklbauer A., Krainer K., Philippitsch R., Winkler G., 2020. The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps. Austrian Journal of Earth Sciences, 113, 1–23. https://doi.org/10.17738/ajes.2020.0001 Search in Google Scholar

Wetzlinger K., Robl J., Liebl M., Dremel F., Stüwe K., von Hagke C., 2023. Old orogen–young topography: Evidence for relief rejuvenation in the Bohemian Massif. Austrian Journal of Earth Sciences, 116/1, 17–38. https://doi.org/10.17738/ajes.2023.0002 Search in Google Scholar

Winkler-Hermaden A., 1955. Ergebnisse und Probleme der quartären Entwicklungsgeschichte am östlichen Alpensaum außerhalb der Vereisungsgebiete: Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 110, 180. Search in Google Scholar

Zámolyi A., Salcher B., Draganits E., Exner U., Wagreich M., Gier S., Fiebig M., Lomax J. Surány G., Diel M., Zámolyi F., 2017. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. International Journal of Earth Sciences, 106, 1695–1721. https://doi.org/10.1007/s00531-016-1383-3 Search in Google Scholar

Ziegler P.A., Dèzes P., 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary change, 58/1–4, 237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004 Search in Google Scholar

eISSN:
2072-7151
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, Geology and Mineralogy, other