Acceso abierto

A thermo-mechanical model of the thermal evolution and incorporation of metamorphic soles in Tethyan ophiolites: a case study from Oman


Cite

Anonymous, 1972. Penrose Field Conference on ophiolites. Geotimes 17, 24–25. Search in Google Scholar

Azuma, S., Katayama, I., Nakakuki, T., 2014. Rheological decoupling at the Moho and implication to Venusian tectonics. Scientific Reports 4, 4403. https://doi.org/10.1038/srep04403 Search in Google Scholar

Barton, C.M., England, P.C., 1979. Shear heating at the Olympos (Greece) thrust and the deformation properties of carbonates at geological strain rates. Geological Society of America Bulletin 90, 483. https://doi.org/10.1130/0016-7606(1979)90<483:SHATOG>2.0.CO;2 Search in Google Scholar

Bernoulli, D., Jenkyns, H.C., 2009. Ophiolites in ocean-continent transitions: From the Steinmann Trinity to sea-floor spreading. Transition Océan-Continent 341, 363–381. https://doi.org/10.1016/j.crte.2008.09.009 Search in Google Scholar

Borojević Šoštarić, S., Palinkaš, A.L., Neubauer, F., Cvetković, V., Bernroider, M., Genser, J., 2014. The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites. Lithos 192–195, 39–55. https://doi.org/10.1016/j.lithos.2014.01.011 Search in Google Scholar

Braeck, S., Podladchikov, Y.Y., 2007. Spontaneous Thermal Runaway as an Ultimate Failure Mechanism of Materials. Physical Review Letters 98, 095504-1-4. Search in Google Scholar

Brun, J.P., Cobbold, P.R., 1980. Strain heating and thermal softening in continental shear zones: a review. Journal of Structural Geology 2, 149–158. https://doi.org/10.1016/0191-8141(80)90045-0 Search in Google Scholar

Burg, J.-P., Gerya, T.V., 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology 23, 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.x Search in Google Scholar

Burg, J.-P., Moulas, E., 2022. Cooling-rate constraints from metapelites across two inverted metamorphic sequences of the Alpine-Himalayan belt; evidence for viscous heating. Journal of Structural Geology 156, 104536. https://doi.org/10.1016/j.jsg.2022.104536 Search in Google Scholar

Cloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. GSA Bulletin 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2 Search in Google Scholar

Dewey, J.F., 1976. Ophiolite obduction. Tectonophysics 31, 93–120. https://doi.org/10.1016/0040-1951(76)90169-4 Search in Google Scholar

Dilek, Y., Furnes, H., 2019. Tethyan ophiolites and Tethyan seaways. Journal of the Geological Society 176, 899–912. https://doi.org/10.1144/jgs2019-129 Search in Google Scholar

Dilek, Y., Furnes, H., Shallo, M., 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–475. https://doi.org/10.1016/j.gr.2007.01.005 Search in Google Scholar

Dimo-Lahitte, A., Monié, P., Vergély, P., 2001. Metamorphic soles from the Albanian ophiolites: Petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20, 78–96. https://doi.org/10.1029/2000TC900024 Search in Google Scholar

Duprat-Oualid, S., Yamato, P., Schmalholz, S.M., 2015. A dimensional analysis to quantify the thermal budget around lithospheric-scale shear zones. Terra Nova 27, 163–168. https://doi.org/10.1111/ter.12144 Search in Google Scholar

Duretz, T., Agard, P., Yamato, P., Ducassou, C., Burov, E.B., Gerya, T.V., 2016. Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case. Gondwana Research 32, 1–10. https://doi.org/10.1016/j.gr.2015.02.002 Search in Google Scholar

El-Shazly, A.K., Coleman, R.G., 1990. Metamorphism in the Oman Mountains in relation to the Semail ophiolite emplacement. Geological Society, London, Special Publications 49, 473–493. https://doi.org/10.1144/GSL.SP.1992.049.01.30 Search in Google Scholar

England, P., Molnar, P., 1993. The interpretation of inverted metamorphic isograds using simple physical calculations. Tectonics 12, 145–157. https://doi.org/10.1029/92TC00850 Search in Google Scholar

Evans, B., Goetze, C., 1979. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research: Solid Earth 84, 5505–5524. https://doi.org/10.1029/JB084iB10p05505 Search in Google Scholar

Fleitout, L., Froidevaux, C., 1980. Thermal and mechanical evolution of shear zones. Journal of Structural Geology 2, 159–164. https://doi.org/10.1016/0191-8141(80)90046-2 Search in Google Scholar

Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion*. Geophysical Journal of the Royal Astronomical Society 43, 163–200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x Search in Google Scholar

Frisch, W., Meschede, M., Blakey, R., 2011. Plate Tectonics: Continental Drift and Mountain Building. Springer. https://doi.org/10.1007/s00445-011-0538-0 Search in Google Scholar

Garber, J.M., Rioux, M., Kylander-Clark, A.R.C., Hacker, B.R., Vervoort, J.D., Searle, M.P., 2020. Petrochronology of Wadi Tayin Metamorphic Sole Metasediment, With Implications for the Thermal and Tec-tonic Evolution of the Samail Ophiolite (Oman/UAE). Tectonics 39, e2020TC006135. https://doi.org/10.1029/2020TC006135 Search in Google Scholar

Garfunkel, Z., 2006. Neotethyan ophiolites: formation and obduction within the life cycle of the host basins. Geological Society, London, Special Publications 260, 301–326. https://doi.org/10.1144/GSL.SP.2006.260.01.13 Search in Google Scholar

Graciansky, P.-C.D., Roberts, D.G., Tricart, P., 2011a. Chapter Eleven - Liguro-piemontais Ophiolites and the Alpine Palaeo-Ocean. In: Pierre-Charles De Graciansky, D.G.R. and P.T. (Ed.), Developments in Earth Surface Processes. Elsevier, 205–242. https://doi.org/10.1016/S0928-2025(11)14011-0 Search in Google Scholar

Graciansky, P.-C.D., Roberts, D.G., Tricart, P., 2011b. Chapter Fourteen - The Birth of the Western and Central Alps: Subduction, Obduction, Collision. In: Pierre-Charles De Graciansky, D.G.R. and P.T. (Ed.), Developments in Earth Surface Processes. Elsevier, 289–315. https://doi.org/10.1016/S0928-2025(11)14014-6 Search in Google Scholar

Graham, C.M., England, P.C., 1976. Thermal regimes and regional meta-morphism in the vicinity of overthrust faults: an example of shear heating and inverted metamorphic zonation from southern California. Earth and Planetary Science Letters 31, 142–152. https://doi.org/10.1016/0012-821X(76)90105-9 Search in Google Scholar

Gruntfest, I.J., 1963. Thermal Feedback in Liquid Flow; Plane Shear at Constant Stress. Transactions of the Society of Rheology 7, 195–207. https://doi.org/10.1122/1.548954 Search in Google Scholar

Guilmette, C., Smit, M.A., van Hinsbergen, D.J.J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., Savard, D., 2018. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nature Geoscience 11, 688–695. https://doi.org/10.1038/s41561-018-0209-2 Search in Google Scholar

Hacker, B.R., 1990. Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman Ophiolite. Journal of Geophysical Research: Solid Earth 95, 4895–4907. https://doi.org/10.1029/JB095iB04p04895 Search in Google Scholar

Hacker, B.R., Mosenfelder, J.L., Gnos, E., 1996. Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints. Tec-tonics 15, 1230–1247. https://doi.org/10.1029/96TC01973 Search in Google Scholar

Ibragimov, I., Moulas, E., 2024. Role of continental margin architecture in models of ophiolite emplacement. Journal of the Geological Society 181, jgs2023-063. https://doi.org/10.1144/jgs2023-063 Search in Google Scholar

Jamieson, R.A., 1980. Formation of metamorphic aureoles beneath ophiolites - Evidence from the St. Anthony Complex, Newfoundland. Geology 8, 150–154. https://doi.org/10.1130/0091-7613(1980)8<150:-FORABO>2.0.CO;2 Search in Google Scholar

Jones, G., Robertson, A., 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society 148, 267. https://doi.org/10.1144/gsjgs.148.2.0267 Search in Google Scholar

Joule, J.P., Faraday, M., 1850. III. On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London 140, 61–82. https://doi.org/10.1098/rstl.1850.0004 Search in Google Scholar

Karaoğlan, F., Parlak, O., Klötzli, U., Koller, F., Rızaoğlu, T., 2013. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Slab Window Magmatism and Convergent Margin Tectonics 4, 399–408. https://doi.org/10.1016/j.gsf.2012.11.011 Search in Google Scholar

Kaus, B.J.P., Podladchikov, Y.Y., 2006. Initiation of localized shear zones in viscoelastoplastic rocks. Journal of Geophysical Research: Solid Earth 111, B04412. https://doi.org/10.1029/2005JB003652 Search in Google Scholar

Kiss, D., Podladchikov, Y., Duretz, T., Schmalholz, S.M., 2019. Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere. Earth and Planetary Science Letters 519, 284–296. https://doi.org/10.1016/j.epsl.2019.05.026 Search in Google Scholar

Landau, L.D., Lifshitz, E.M., 1987. Course of theoretical Physics - Fluid Mechanics, 2nd ed. Pergamon. https://doi.org/10.1016/B978-0-08-033933-7.50007-6. Search in Google Scholar

Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., Müller, R.D., 2021. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps. Solid Earth 12, 885–913. https://doi.org/10.5194/se-12-885-2021 Search in Google Scholar

Liati, A., Gebauer, D., Fanning, C.M., 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207, 171–188. https://doi.org/10.1016/j.chemgeo.2004.02.010 Search in Google Scholar

McCarthy, A., Chelle-Michou, C., Müntener, O., Arculus, R. and Blundy, J. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc. Geology, 46, 1059–1062, https://doi.org/10.1130/G45366.1. Search in Google Scholar

Mako, C.A., Caddick, M.J., 2018. Quantifying magnitudes of shear heating in metamorphic systems. Tectonophysics 744, 499–517. https://doi.org/10.1016/j.tecto.2018.07.003 Search in Google Scholar

Malpas, J., 1979. The dynamothermal aureole of the Bay of Islands ophiolite suite. Canadian Journal of Earth Sciences 16, 2086–2101. https://doi.org/10.1139/e79-198 Search in Google Scholar

Moores, E.M., 1982. Origin and emplacement of ophiolites. Reviews of Geophysics 20, 735–760. https://doi.org/10.1029/RG020i004p00735 Search in Google Scholar

Moulas, E., Burg, J.-P., Podladchikov, Y., 2014. Stress field associated with elliptical inclusions in a deforming matrix: Mathematical model and implications for tectonic overpressure in the lithosphere. Tectono-physics 631, 37–49. https://doi.org/10.1016/j.tecto.2014.05.004 Search in Google Scholar

Moulas, E., Kaus, B., Jamtveit, B., 2022. Dynamic pressure variations in the lower crust caused by localized fluid-induced weakening. Communications Earth & Environment 3, 157. https://doi.org/10.1038/s43247-022-00478-7 Search in Google Scholar

Moulas, E., Podladchikov, Y.Y., Aranovich, L.Y., Kostopoulos, D.K., 2013. The problem of depth in geology: When pressure does not translate into depth. Petrology 21, 527–538. https://doi.org/10.1134/S0869591113060052 Search in Google Scholar

Myhill, R., 2011. Constraints on the evolution of the Mesohellenic Ophiolite from subophiolitic metamorphic rocks. Geological Society of America Special Papers 480, 75–94. https://doi.org/10.1130/2011.2480(03) Search in Google Scholar

Parlak, O., Dunkl, I., Karaoğlan, F., Kusky, T.M., Zhang, C., Wang, L., Koepke, J., Billor, Z., Hames, W.E., Şimşek, E., Şimşek, G., Şimşek, T., Öztürk, S.E., 2019. Rapid cooling history of a Neotethyan ophiolite: Evidence for contemporaneous subduction initiation and metamorphic sole formation. GSA Bulletin 131, 2011–2038. https://doi.org/10.1130/B35040.1 Search in Google Scholar

Petroccia, A., Carosi, R., Montomoli, C., Iaccarino, S., Vitale Brovarone, A., 2022. Deformation and temperature variation along thrust-sense shear zones in the hinterland-foreland transition zone of collisional settings: A case study from the Barbagia Thrust (Sardinia, Italy). Journal of Structural Geology 161, 104640. https://doi.org/10.1016/j.jsg.2022.104640 Search in Google Scholar

Philpotts, A.R. and Ague, J.J. 2022. Principles of Igneous and Metamorphic Petrology, 3rd ed. DOI: 10.1017/9781108631419 Search in Google Scholar

Pomonis, P., Tsikouras, B., Hatzipanagiotou, K., 2002. Origin, evolution and radiometric dating of subophiolitic metamorphic rocks from the Koziakas ophiolite (W. Thessaly, Greece). Neues Jahrbuch Für Mineralogie, Abhandlungen 177, 255–276. https://doi.org/10.1127/0077-7757/2002/0177-0255 Search in Google Scholar

Ranalli, G., 1995. Rheology of the Earth, 2nd ed. Chapman and Hall. doi:10.1017/S0016756897226981 Search in Google Scholar

Rassios, A.E., Dilek, Y., 2009. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos 108, 207–223. https://doi.org/10.1016/j.lithos.2008.09.005 Search in Google Scholar

Rassios, A.H.E., Moores, E.M., 2006. Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece). Geological Society, London, Special Publications 260, 237. https://doi.org/10.1144/GSL.SP.2006.260.01.11 Search in Google Scholar

Reitan, P.H., 1968. Frictional heat during metamorphism: Quantitative evaluation of concentration of heat generation in time. Lithos 1, 151–163. https://doi.org/10.1016/S0024-4937(68)80005-2 Search in Google Scholar

Renshaw, C.E., Schulson, E.M., 2017. Strength-limiting mechanisms in high-confinement brittle-like failure: Adiabatic transformational faulting. Journal of Geophysical Research: Solid Earth 122, 2016JB013407. https://doi.org/10.1002/2016JB013407 Search in Google Scholar

Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., Hacker, B., 2016. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology. Earth and Planetary Science Letters 451, 185–195. https://doi.org/10.1016/j.epsl.2016.06.051 Search in Google Scholar

Rybacki, E., Dresen, G., 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics 382, 173–187. https://doi.org/10.1016/j.tecto.2004.01.006 Search in Google Scholar

Spray, J.G., 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. Geological Society, London, Special Publications 13, 255. https://doi.org/10.1144/GSL.SP.1984.013.01.21 Search in Google Scholar

Spray, J.G., Roddick, J.C., 1980. Petrology and 40Ar/39Ar geochronology of some hellenic sub-ophiolite metamorphic rocks. Contributions to Mineralogy and Petrology 72, 43–55. https://doi.org/10.1007/BF00375567 Search in Google Scholar

Stüwe, K., 2007. Geodynamics of the Lithosphere, 2nd ed. Springer-Verlag Berlin Heidelberg. Search in Google Scholar

Stüwe, K., Ehlers, K., 1998. Distinguishing Cooling Histories using Thermometry. Interpretations of Cooling Curves with some Examples from the Glein-Koralm Region and the Central Swiss Alps. Mitteilungen Der Österreichischen Geologischen Gesellschaft 89, 201–212. Search in Google Scholar

Stüwe, K. 1998. Heat sources of Cretaceous metamorphism in the Eastern Alps — a discussion. Tectonophysics, 287, 251–269, https://doi.org/10.1016/S0040-1951(98)80072-3. Search in Google Scholar

Tsenn, M.C., Carter, N.L., 1987. Upper limits of power law creep of rocks. Tectonophysics 136, 1–26. https://doi.org/10.1016/0040-1951(87)90332-5 Search in Google Scholar

Vardoulakis, I., 2002. Steady shear and thermal run-away in clayey gouges. International Journal of Solids and Structures 39, 3831–3844. https://doi.org/10.1016/S0020-7683(02)00179-8 Search in Google Scholar

Wakabayashi, J., Dilek, Y., 2003. What constitutes ‘emplacement’ of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geological Society, London, Special Publications 218, 427–447. https://doi.org/10.1144/GSL.SP.2003.218.01.22 Search in Google Scholar

Wakabayashi, J., Dilek, Y., 2000. Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. In: Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A. (Eds.), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, 0. https://doi.org/10.1130/0-8137-2349-3.53 Search in Google Scholar

Whitechurch, H., Parrot, J., 1978. Ecailles métamorphiques infrapéridotiques dans le Pinde septentrional (Grèce): croûte océanique, métamorphisme et subduction. Comptes Rendus de l’Académie Des Sciences Paris 286, 1491–1494. Search in Google Scholar

Whitechurch, H., Parrot, J.F., 1974. Les écailles métamorphiques infrapéridotitiques du Baër-Bassit (nord-ouest de la Syrie). Cah. ORSTOM, Sér. Géol. VI, 173–184. Search in Google Scholar

Williams, H., Smyth, W.R., 1973. Metamorphic aureoles beneath ophiolite suites and alpine peridotites; tectonic implications with west Newfoundland examples. American Journal of Science 273, 594–621. https://doi.org/10.2475/ajs.273.7.594 Search in Google Scholar

Woodcock, N.H., Robertson, A.H.F., 1977. Origins of some ophiolite-related metamorphic rocks of the “Tethyan” belt. Geology 5, 373–376. https://doi.org/10.1130/0091-7613(1977)5<373:OOSOMR>2.0.CO;2 Search in Google Scholar

Young, J., 2015. Heat, work and subtle fluids: a commentary on Joule (1850) ‘On the mechanical equivalent of heat.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, 20140348. https://doi.org/10.1098/rsta.2014.0348 Search in Google Scholar

Yuen, D.A., Fleitout, L., Schubert, G., Froidevaux, C., 1978. Shear deformation zones along major transform faults and subducting slabs. Geophysical Journal of the Royal Astronomical Society 54, 93–119. https://doi.org/10.1111/j.1365-246X.1978.tb06758.x Search in Google Scholar

eISSN:
2072-7151
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, Geology and Mineralogy, other