Cite

Abaza, H., Shenawa, A. & Semmelink, S. (2023) Using Radiant Heating System to Prevent Bridge Freezing. ASME 2023 Heat Transfer Summer Conference, V001T12A001. Washington, DC, American Society of Mechanical Engineers, DOI: 10.1115/HT2023-105739. Search in Google Scholar

Arslanoglu, N. & Yigit, A. (2016) Experimental and theoretical investigation of the effect of radiation heat flux on human thermal comfort. Energy and Buildings, 113, 23-29, DOI: 10.1016/j.enbuild.2015.12.039. Search in Google Scholar

Aryal, A. & Becerik-Gerber, B. (2020) Thermal comfort modeling when personalized comfort systems are in use: Comparison of sensing and learning methods. Building and Environment, 185, 107316, DOI: 10.1016/j.buildenv.2020.107316. Search in Google Scholar

Biermann, S., Magi, A., Sachse, P., Hoffmann, M., Wedrich, K., Müller, L., Koppert, R., Ortlepp, T. & Baldauf, J. (2020) Advanced broadband MEMS infrared emitter based on high-temperature-resistant nanostructured surfaces and packaging solutions for harsh environments. Proceedings Volume 11279 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII, eds. L.P. Sadwick & T. Yang. San Francisco, SPIE, DOI: 10.1117/12.2545119. Search in Google Scholar

Bulhakov, O., Litvinov, O., Fedorchuk, S., Ivakhnov, A., Maslak, M. & Kulapin, O. (2023) Evaluation of the energy efficiency of the infrared long-wave heating system in various applications. 2023 IEEE 4th KhPI Week on Advanced Technology. Kharkiv, IEEE, DOI: 10.1109/KhPIWeek61412.2023.103 12845. Search in Google Scholar

Dudkiewicz, E., Fidorów-Kaprawy, N. & Szałański, P. (2022). Environmental benefits and energy savings from gas radiant heaters’ flue-gas heat recovery. Sustainability, 14(13), 8013, DOI: 10.3390/ su14138013. Search in Google Scholar

Dzelme, V., Telicko, J. & Jakovics, A. (2022). Thermal comfort in indoor spaces with radiant capillary heaters. Environmental and Climate Technologies, 26(1), 708-719, DOI: 10.2478/rtuect-2022-0054. Search in Google Scholar

Fu, S., Pan, Y., Wan, X., Wang, J., Jia, X., Luo, X. & Ma, H. (2024) Numerical simulation of heat transfer characteristics of capillary radiant heating floor. KSCE Journal of Civil Engineering, 28(2), 546-556, DOI: 10.1007/s12205-024-1518-1. Search in Google Scholar

Gao, X., Von Boecklin, M., Ermanoski, I. & Stechel, E.B. (2021) Low-cost radiant heater for rapid response, high-temperature heating. Frontiers in Energy Research, 9, 652203, DOI: 10.3389/fenrg. 2021.652203. Search in Google Scholar

Kavga, A., Alexopoulos, G., Bontozoglou, V., Pantelakis, S. & Panidis, T. (2012) Experimental investigation of the energy needs for a conventionally and an infrared-heated greenhouse. Advances in Mechanical Engineering, 4, 789515, DOI: 10.1155/2012/789515. Search in Google Scholar

Kim, S.H., Cho, E., Kim, M. & Lee, S.-J. (2021) High‐performance rollable polymer/metal/polymer thin‐film heater and heat mirror. Plasma Processes and Polymers, 18(12), 2100098, DOI: 10.1002/ ppap.202100098. Search in Google Scholar

Linhoss, J.E., Purswell, J.L., Davis, J.D. & Fan, Z. (2017) Comparing radiant heater performance using spatial modeling. Applied Engineering in Agriculture, 33(3), 395-405, DOI: 10.13031/aea.12108. Search in Google Scholar

Lu, L., Wen, J., Chen, J. & Liu, X. (2024). Study on material parameter optimization for improving the heat transfer performance of lightweight floor radiant heating. Journal of Building Engineering, 86, 108698, DOI: 10.1016/j.jobe.2024.108698. Search in Google Scholar

Maldonado, L., Shi, C., Vian, C. & Ostanek J. (2020) Development and Evaluation of an Infrared Heating System for Die Preheating. Vol. 11: Heat Transfer and Thermal Engineering, V011T11A050. Virtual, Online: American Society of Mechanical Engineers, DOI: 10.1115/IMECE2020-23744. Search in Google Scholar

Radhi, S.S., Al-Khafaji, Z.S. & Falah., M.W. (2022) Sustainable heating system by infrared radiators. Heritage and Sustainable Development, 4(1), 42-52, DOI: 10.37868/sei.v4i1.id82. Search in Google Scholar

Römer, M., Bergers, J., Gabriel, F. & Dröder, K. (2022) Temperature control for automated tape laying with infrared heaters based on reinforcement learning. Machines, 10(3), 164, DOI: 10.3390/machines 10030164. Search in Google Scholar

Ryms, M. & Lewandowski, W.M. (2021) Evaluating the influence of radiative heat flux on convective heat transfer from a vertical plate in air using an improved heating plate. International Journal of Heat and Mass Transfer, 173, 121232, DOI: 10.1016/j.ijheatmasstransfer.2021.121232. Search in Google Scholar

Samek, L., De Maeyer-Worobiec, A., Spolnik, Z., Bencs, L., Kontozova, V., Bratasz, Ł., Kozłowski, R., Van Grieken, R. (2007) The impact of electric overhead radiant heating on the indoor environment of historic churches. Journal of Cultural Heritage, 8(4), 361-369, DOI: 10.1016/j.culher.2007.03.006. Search in Google Scholar

Schiff, E.A. (2024) A radiant heating experiment and analogy with earth’s surface temperature. The Physics Teacher, 62(1), 50-52, DOI: 10.1119/5.0131687. Search in Google Scholar

Shatskov, A.O. (2021) Determining temperature of adiabatic surfaces in rooms with radiant heating. Thermal Engineering, 68(9), 717-722, DOI: 10.1134/S0040601521090081. Search in Google Scholar

Spodyniuk, N., Voznyak, O., Savchenko, O., Sukholova, J. & Kasynets., M. (2022a) Optimization of heating efficiency of buildings above underground coal mines by infrared heaters. Scientific Bulletin of National Mining University, 3, 100-106, DOI: 10.33271/nvngu/2022-3/100. Search in Google Scholar

Spodyniuk, N., Voznyak, O., Savchenko, O., Dovbush, O., Kasynets, M. & Datsko, O. (2022b) Analysis of premise infrared heating and ventilation with an exhaust outlet and flat decking air flow. Diagnostyka, 23(2), 1-10, DOI: 10.29354/diag/149797. Search in Google Scholar

Tan, J., Liu, J., Liu, W., Yu, B. & Zhang, J. (2022) Performance on heating human body of an optimised radiant-convective combined personal electric heater. Building and Environment, 214, 108882, DOI: 10.1016/j.buildenv.2022.108882. Search in Google Scholar

Tesfaye, K., Silambarasan, M., Manova, L.M., Balasubramanian, E. & Praveen, A.S. (2021) Experimental and numerical study on temperature distribution of infrared heater used for curing solid propellant slurries. In: Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering, eds. N. Gascoin & E. Balasubramanian. Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore, 73-79, DOI: 10.1007/978-981-15-6619-6_8. Search in Google Scholar

Tian, T., Wei, X., Elhassan, A., Yu, J., Li, Z. & Ding B. (2021) Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. Chemical Engineering Journal, 417, 128114, DOI: 10.1016/j.cej.2020.128114. Search in Google Scholar

Trokhaniak, V., Spodyniuk, N., Antypov, I., Shelimanova, O., Tarasenko, S., Mishchenko A. (2021) Experimental research and CFD modeling of modular poultry breeding. INMATEH Agricultural Engineering, 65, 3, 303-311, DOI: 10.35633/inmateh-65-32. Search in Google Scholar

Vestfal, P., Černeckienė, J. & Šeduikytė, L. (2023) Analysis of the impact of high-space building heating system solutions on building energy efficiency. Journal of Sustainable Architecture and Civil Engineering, 33(2), 113-121, DOI: 10.5755/j01.sace.33.2.34305. Search in Google Scholar

Voznyak, O., Spodyniuk, N., Savchenko, O., Sukholova, I. & Kasynets, M. (2021) Enhancing energetic and economic efficiency of heating coal mines by infrared heaters. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 104-109, DOI: 10.33271/nvngu/2021-2/104. Search in Google Scholar

Werner-Juszczuk, A.J. & Siuta-Olcha, A. (2024) Assessment of the validity of using a radiant panel in the low-height floor heating. Building Services Engineering Research and Technology, 45(2), 203-212, DOI: 10.1177/01436244231226304. Search in Google Scholar

Wu, F., Alkandari, S., Ma, J., Dhillon, P., Liu, H., Braun, J.E., Karava, P., Ziviani, D. & Horton, D.T. (2024) Wall-embedded micro heat pump for radiant heating in buildings: evaluation of energy and thermal comfort performance. Energy and Buildings, 310, 114075, DOI: 10.1016/j.enbuild.2024.114075. Search in Google Scholar

Xu, Ch. & Shao, S. (2024) Performances investigations on thermal characteristics of a novel direct-condensation convective-radiant heating panel: An experimental and numerical study. Applied Thermal Engineering, 244, 122705, DOI: 10.1016/j.applthermaleng.2024.122705. Search in Google Scholar

eISSN:
2544-963X
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Architecture and Design, other, Engineering, Civil Engineering, Materials, Environmental Engineering