Acceso abierto

Effect of polypropylene fiber structure and length on selected properties of concrete


Cite

Bagherzadeh, R., Sadeghi, A.-H., & Latifi, M. (2011) Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Text. Res. J., 82, 1, 88-96. Search in Google Scholar

Berkowski, P., & Kosior-Kazberuk, M. (2015) Effect of fiber on the concrete resistance to surface scaling due to cyclic freezing and thawing. Proc. Eng., 111, 121-127. Search in Google Scholar

Chaudhary, M., Srivastava, V., & Agarwal, V. (2014) Effect of waste low density polyethylene on mechanical properties of concrete. J. Acad. Ind. Res., 3, 123. Search in Google Scholar

Elzafraney, M., Soroushian, P., & Deru, M. (2005) Development of energy-efficient concrete buildings using recycled plastic aggregates. J. Archit. Eng., 11, 122-130. Search in Google Scholar

Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013) Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater., 48, 295-305. Search in Google Scholar

Han, C.-G., Hwang, Y.-S., Yang, S.-H., & Gowripalan, N. (2005) Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cem. Concr. Res., 35, 1747-1753. Search in Google Scholar

Helbrych, P. (2021) Effect of dosing with propylene fibers on the mechanical properties of concretes. Constr. Optimized Ener. Potenti., 2, 39-44. Search in Google Scholar

Helbrych, P. (2022) Mechanical properties of concretes modified with steel fibers and polypropylene. Sci. J. the Maritime University of Szczecin, 71(143), 56-63. Search in Google Scholar

Hsie, M., Tu, C., & Song, P. (2008) Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng.: A 494, 153-157. Search in Google Scholar

Jura, J., & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14, 6708. Search in Google Scholar

Kakooei, S., Akil, H.M., Jamshidi, M., & Rouhi, J. (2012) The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater., 27, 73-77. Search in Google Scholar

Karahan, O., & Atis, C.D. (2011) The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des., 32, 1044-1049. Search in Google Scholar

Kayali, O., Haque, M., & Zhu, B. (1999) Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cem. Concr. Res., 29, 1835-1840. Search in Google Scholar

Kayali, O., Haque, M., & Zhu, B. (2003) Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement Concr. Compos., 25, 207-213. Search in Google Scholar

Khadakbhavi, B., Reddy, D.V.V., & Ullagaddi, D. (2010) Effect of aspect ratios of waste HDPE fibres on the properties of fibres on fiber reinforced concrete. Res. J. Eng. Technol., 3, 13-21. Search in Google Scholar

Kołtuńczyk, E., & Nowicka, G. (2007) Effect of poly(sodium-4-styrenesulphonate) additives on properties of cement suspensions. Proceedings of International Scientific Conference Surfactants and Dispersed Systems in Theory and Practice. Ed. K.A. Wilk. Wrocław, PALMAPress, 533-536. Search in Google Scholar

Kosior-Kazberuk, M., & Berkowski, P. (2016) Fracture mechanics parameters of fine grained concrete with polypropylene fibres. Proc. Eng., 161, 157-162. Search in Google Scholar

Kumar, K., & Prakash, P. (2006) Use of waste plastic in cement concrete pavement. Adv. Mater. Res. J., 15, 1-21. Search in Google Scholar

Latifi, M.R., Biricik, Ö., & Mardani Aghabaglou, A. (2022) Effect of the addition of polypropylene fiber on concrete properties. J. Adhes. Sci. Technol., 36(4), 345-369. Search in Google Scholar

López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., & Guillem, C. (2013) Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res., 54, 29-35. Search in Google Scholar

Ma, M., Tam, V.W., Le, K.N., & Osei-Kuei, R. (2022) Factors affecting the price of recycled concrete: A critical review. J. Build. Eng., 46, 103743. Search in Google Scholar

Martínez-Barrera, G., Vigueras-Santiago, E., Hernández-López, S., Brostow, W., & Menchaca-Campos, C. (2005) Mechanical improvement of concrete by irradiated polypropylene fibers. Polym. Eng. Sci., 45, 1426-1431. Search in Google Scholar

Martínez-Barrera, G., Menchaca-Campos, C., Hernández-López, S., Vigueras-Santiago, E., & Brostow, W. (2006) Concrete reinforced with irradiated nylon fibers. J. Mater. Res., 21, 484-491. Search in Google Scholar

Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O., & Brostow, W. (2011) Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Compos. A Appl. Sci. Manuf., 42, 567-572. Search in Google Scholar

Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S., & Hosseinpour, I. (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater., 25, 351-358. Search in Google Scholar

Meddah, M.S., & Bencheikh, M. (2009) Properties of concrete reinforced with different kinds of industrial waste fibre materials. Constr. Build. Mater., 23, 3196-3205. Search in Google Scholar

Mesbah, H.A., & Buyle-Bodin, F. (1999) Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Constr. Build. Mater., 13, 439-447. Search in Google Scholar

Naik, T.R., Singh, S.S., Huber, C.O., & Brodersen, B.S. (1996) Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res., 26, 1489-1492. Search in Google Scholar

Nili, M., & Afroughsabet, V. (2010) The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater., 24, 927-933. Search in Google Scholar

Pietrzak A. (2018) Assessment of the impact of recycling from pet bottles in selected concrete properties. Const. Optimized Ener. Potent., 7, 51-56. Search in Google Scholar

Pietrzak, A., & Ulewicz, M. (2018) The effect of the addition of polypropylene fibres on improvement on concrete quality. MATEC Web of Conferences 183, QPI 2018. Search in Google Scholar

Pietrzak, A., & Ulewicz, M. (2019) The impact of the length of polypropylene fibers on selected properties of concrete. Acta Sci. Pol. Architectura, 18(2), 21-25. Search in Google Scholar

Pietrzak, A. (2022) The use of polymer recyclates in the technology of concrete composites production. Mater. Res. Proc., 24, 83-89. Search in Google Scholar

PN-EN 14889-2:2007 Włókna do betonu – Część 2: Włókna polimerowe – Definicje, wymagania i zgodność. Search in Google Scholar

PN-EN 12390-1:2021-12. Badania betonu – Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badań i form. Search in Google Scholar

PN-EN 12390-2:2019-07. Badania betonu – Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych. Search in Google Scholar

Purcell, A., Forde, M.M., Maharaj, R., & Maharaj, C. (2021) Optimising the performance of crumb rubber modified concrete. J. Solid Waste Technol. Manage. 47(1), 137-145. Search in Google Scholar

Richardson, A.E. (2006) Compressive strength of concrete with polypropylene fibre additions. Struct. Surv., 24, 138-153. Search in Google Scholar

Sanjuan, M.A., & Moragues, A. (1997) Polypropylene-fibre-reinforced mortar mixes: optimization to control plastic shrinkage. Compos. Sci. Technol., 57, 655-660. Search in Google Scholar

Sivakumar, A., & Santhanam, M. (2007) A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cement Concr. Compos., 29, 575-581. Search in Google Scholar

Song, P., Hwang, S., & Sheu, B. (2005) Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem. Concr. Res., 35, 1546-1550. Search in Google Scholar

Suji, D., Natesan, S., & Murugesan, R. (2007) Experimental study on behaviors of polypropylene fibrous concrete beams. J. Zhejiang Univ. Sci. A, 8, 1101-1109. Search in Google Scholar

Toutanji, H., McNeil, S., & Bayasi, Z. (1998) Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem. Concr. Res., 28, 961-968. Search in Google Scholar

Toutanji, H.A. (1999) Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr. Build. Mater., 13, 171-177. Search in Google Scholar

Tomov, M., & Velkoska, C. (2022) Contribution of the quality costs to sustainable development. Prod. Eng. Arch., 28(2), 164-171. Search in Google Scholar

Ulewicz, M., & Halbiniak, J. (2016) Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochem. Probl. Miner. Process., 52, 1002-1010. Search in Google Scholar

Ulewicz, M., & Pietrzak, A. (2021) Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials, 14, 872. Search in Google Scholar

Ulewicz, M., & Pietrzak, A. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16, 2231. Search in Google Scholar

Walczak, P., Małolepszy, J., Reben, M., & Rzepa, K. (2015) Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Proc. Eng., 108, 453-458. Search in Google Scholar

Wang, Y., Zureick, A.-H., Cho, B.S., & Scott, D. (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci., 29, 4191-4199. Search in Google Scholar

Wang, Y., Wu, H., & Li, V.C. (2000) Concrete reinforcement with recycled fibers. J. Mater. Civ. Eng., 12, 314-319. Search in Google Scholar

Wongtanakitcharoen, T., & Naaman, A.E. (2007) Unrestrained early age shrinkage of concrete with popypropylene, PVA, and carbon fibers. Mater. Struct., 40, 289-300. Search in Google Scholar

Yao, W., Li, J., & Wu, K. (2003) Mechanical properties of hybrid fiber reinforced concrete at low fiber volume fraction. Cem. Concr. Res., 33, 27-30. Search in Google Scholar

Zhang, Y., Mao, Y., Jiao, L. Shuai, C., & Zhang, H. (2021) Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environ. Impact Assess. Rev., 89, 106580. Search in Google Scholar

eISSN:
2544-963X
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Architecture and Design, other, Engineering, Civil Engineering, Materials, Environmental Engineering