1. bookVolumen 18 (2018): Edición 2 (October 2018)
Detalles de la revista
License
Formato
Revista
eISSN
2286-2455
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Mobile Communication - Past, Present and Future: a Review

Publicado en línea: 02 Nov 2018
Volumen & Edición: Volumen 18 (2018) - Edición 2 (October 2018)
Páginas: 12 - 29
Detalles de la revista
License
Formato
Revista
eISSN
2286-2455
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés

[1] Kumar. A, Gupta. M, A review on activities of fifth generation mobile communication system, Alexandria Engineering Journal, Elsevier: pp-1-11, Feb 2017, DOI: https://doi.org/10.1016/j.aej.2017.01.043.10.1016/j.aej.2017.01.043Abierto DOISearch in Google Scholar

[2] Kumar. A, Gupta. M, Design, comparative study and analysis of CDMA for different modulation techniques, Egyptian Informatics Journal, Elsevier: 16(3), pp. 351-365, 2015. DOI: http://dx.doi.org/10.1016/j.eij.2015.07.004.10.1016/j.eij.2015.07.004Abierto DOISearch in Google Scholar

[3] Pandi. N, Kumar. A, A Review on Cognitive Radio for Next Generation Cellular Network and its Challenges, American Journal of Engineering and Applied Sciences: Vol.10, No.2, pp. 334-347, April 2017. DOI: 10.3844/ajeassp.2017.334.347.10.3844/ajeassp.2017.334.347Search in Google Scholar

[4] Jiang. D and Liu. G - An overview of 5G requirements- 5G mobile communications, Spinger: pp. 3-26, 2017. DOI: 10.1007/978-3-319-34208-5_1.10.1007/978-3-319-34208-5_1Search in Google Scholar

[5] Tinatin. M, Evolution mobile wireless communication and LTE networks, Application of Information and Communication Technologies (AICT), IEEE: pp. 1-7, Dec 2012. DOI: 10.1109/ICAICT.2012.6398495.10.1109/ICAICT.2012.6398495Abierto DOISearch in Google Scholar

[6] Sheikh, Asrar - Wireless communication-Theory and Techniques; Springer US: 2004.DOI: 10.1007/978-1-4419-9152-2.10.1007/978-1-4419-9152-2Abierto DOISearch in Google Scholar

[7] Proakis. J, Salehi. M- Fundamentals of communication system: Pearson Education. 2008.Search in Google Scholar

[8] Akira. I- Electromagetic wave propagation, Radiation and scattering; second edition; IEEE press wiley, July 2017.Search in Google Scholar

[9] E. A. Alyan, M. S. Anuar, C. B. M. Rashidi, Analysis of theoretical and simulated performance of indoor optical wireless system based on CDMA technology, Electronic Design, IEEE: pp.64-69, Jan 2017. DOI: 10.1109/ICED.2016.7804629.10.1109/ICED.2016.7804629Abierto DOISearch in Google Scholar

[10] Olanrewaju B. Wojuola, Stanley H. Mneney, Viranjay M. Srivastava, CDMA in signal encryption and information security, Information Security for South Africa (ISSA), IEEE: pp.56-61, Jan 2017. DOI: 10.1109/ISSA.2016.7802929.10.1109/ISSA.2016.7802929Search in Google Scholar

[11] Javier Gozalvez, First Commercial LTE Network, IEEE Vehicular Technology Magazine, IEEE Journals & Magazines: pp.8-16, 2010. DOI: 10.1109/MVT.2010.936656.10.1109/MVT.2010.936656Abierto DOISearch in Google Scholar

[12] Carlà L, Fantacci R, Gei F, Marabissi D, Micciullo L, LTE enhancements for public safety and security communications to support group multimedia communications, IEEE Network: 30(1), pp.80-85, Feb 2016. DOI: 10.1109/MNET.2016.7389835.10.1109/MNET.2016.7389835Abierto DOISearch in Google Scholar

[13] Ghosh A, Ratasuk R, Mondal B, Mangalvedhe N, Thomas M, LTE-advanced: next-generation wireless broadband technology, IEEE Wireless Communications: 17(3), pp.10-22, 2010. DOI: 10.1109/MWC.2010.5490974.10.1109/MWC.2010.5490974Abierto DOISearch in Google Scholar

[14] Chih-Cheng Tseng, et al, Fast game-based handoff mechanism with load balancing for LTE/LTE-A heterogeneous networks, Journal of Network and Computer Applications, Elsevier: 85(1), pp-106-115, May 2017. DOI: https://doi.org/10.1016/j.jnca.2016.12.00210.1016/j.jnca.2016.12.002Abierto DOISearch in Google Scholar

[15] Syed A hanson-3GPP LTE Radio and cellular Technology-Evolution; Taylor and Francis group; 2016.Search in Google Scholar

[16] Aldmour I, Wireless broadband tools and their evolution towards 5G networks, Wireless Personal Communications, Springer: 95(4), pp.1-26, March 2017. DOI: https://doi.org/10.1007/s11277-017-4058-x.10.1007/s11277-017-4058-xAbierto DOISearch in Google Scholar

[17] Scholl.H- E-Government information, technology and transformation; AMIS; London; 2010.Search in Google Scholar

[18] Pandi. N, Kumar. A, Analysis of OFDM System with Energy Detection Spectrum Sensing, Indian journal of science and technology: 9(16), pp. 1-6, April 2016. DOI: 10.17485/ijst/2016/v9i16/90230.10.17485/ijst/2016/v9i16/90230Search in Google Scholar

[19] Kumar.A, Gupta. M, A Review on OFDM and PAPR Reduction Techniques, American Journal of Engineering and Applied Sciences: 8(2), pp. 202-209, May 2015. DOI: 10.3844/ajeassp.2015.202.209.10.3844/ajeassp.2015.202.209Abierto DOISearch in Google Scholar

[20] Kumar. A, Gupta. M, Design of 4: 8 MIMO OFDM with MSE Equalizer for Different Modulation Techniques, Wireless personal communication: 95(4), pp.4539-4560, August 2017. DOI: DOI: 10.1007/s11277-017-4099-1.10.1007/s11277-017-4099-1Abierto DOISearch in Google Scholar

[16] Lukas Wezranowski, Lubomír. Ivanek, Zdenek, Urban, Yahia Zakaria, Optimization of Antenna System for MIMO Technology, Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry, Springer: 451, pp.459-469, 2016. DOI: https://doi.org/10.1007/978-3-319-33816-3_45.10.1007/978-3-319-33816-3_45Abierto DOISearch in Google Scholar

[22] Hsuan-Fu Wang, et al, Channel Equalization for MIMO LTE System in Multi-path Fading Channels. Frontier Computing, Springer: 375, pp.697-704, April 2016. DOI: https://doi.org/10.1007/978-981-10-0539-8_68.10.1007/978-981-10-0539-8_68Abierto DOISearch in Google Scholar

[23] Kumar A, Gupta.M, Key Technologies and Problems in Deployment of 5G Mobile Communication System, Communications on Applied Electronics: 1(3), pp.4-7, 2015.10.5120/cae-1513Search in Google Scholar

[24] Tan. Wang, Gen. Li,- Spectrum Analysis and Regulations for 5G-5G mobile communications; Spinger: pp. 27-50, 2017. DOI: 10.1007/978-3-319-34208-5_2.10.1007/978-3-319-34208-5_2Abierto DOISearch in Google Scholar

[25] Shafi, Mansoor, et al, 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice, IEEE Journal on Selected Areas in Communications: 35(6), pp.1201-1221, 2017. DOI: 10.1109/JSAC.2017.2692307.10.1109/JSAC.2017.2692307Abierto DOISearch in Google Scholar

[26] Ancans, Guntis, et al. Spectrum considerations for 5G mobile communication systems, Proceedia Computer Science, Elsevier: 104, pp.509-516, 2017. DOI: https://doi.org/10.1016/j.procs.2017.01.166.10.1016/j.procs.2017.01.166Abierto DOISearch in Google Scholar

[27] Piyush. V, Gupta. M, Kumar. A, Massive-MIMO-Past, Present and Future: A Review, Indian Journal of Science and Technology, 9(48), 2016. DOI: 10.17485/ijst/2016/v9i48/99891.10.17485/ijst/2016/v9i48/99891Search in Google Scholar

[28] Trinh Van Chien, Emil Björnson-Massive MIMO Communications-5G mobile communications; Spinger: pp. 77-116, 2017. DOI: 10.1007/978-3-319-34208-5_4.10.1007/978-3-319-34208-5_4Abierto DOISearch in Google Scholar

[29] Wang. Y, Shi. Z-Millimeter-Wave Mobile Communications-5G mobile communications; Spinger: pp. 117-133, 2017. DOI: 10.1007/978-3-319-34208-5_5.10.1007/978-3-319-34208-5_5Abierto DOISearch in Google Scholar

[30] Bogale, Endeshaw T, Le. L, Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges, IEEE Vehicular Technology Magazine: 11(1), pp.64-75, 2016. DOI: 10.1109/MVT.2015.2496240.10.1109/MVT.2015.2496240Abierto DOISearch in Google Scholar

[31] Razav. R, et al- Non-Orthogonal Multiple Access (NOMA) for Future Radio Access-5G mobile communications; Spinger: pp. 135-162, 2017. DOI: 10.1007/978-3-319-34208-5_6.10.1007/978-3-319-34208-5_6Abierto DOISearch in Google Scholar

[32] Islam, SM. Riazul, et al, Power-domain nonorthogonal multiple access (NOMA) in 5G systems: potentials and challenges, IEEE Communications Surveys & Tutorials: 19(2), 2017. DOI: 10.1109/COMST.2016.262111610.1109/COMST.2016.2621116Abierto DOISearch in Google Scholar

[33] P. Wang, J. Xiao, and L. P, Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems, IEEE Veh. Technol. Mag: 1(3), pp. 4-11, Sep. 2006. DOI: 10.1109/MVT.2006.307294.10.1109/MVT.2006.307294Abierto DOISearch in Google Scholar

[34] Matthe. M, et al,- Generalized Frequency Division Multiplexing: A Flexible Multi-Carrier Waveform for 5G-5G mobile communications; Spinger: pp. 223-257, 2017. DOI: 10.1007/978-3-319-34208-5_9.10.1007/978-3-319-34208-5_9Abierto DOISearch in Google Scholar

[35] D. Zhang, M. Matthé, L. Mendes, G. Fettweis, A Markov Chain Monte Carlo algorithm for near-optimum detection of MIMO-GFDM signals, in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC): pp.281 – 286, Hong Kong, 2015. DOI: 10.1109/PIMRC.2015.7343310.10.1109/PIMRC.2015.7343310Abierto DOISearch in Google Scholar

[36] Choi, Yong I, et al, On the Performance of Beam Division Nonorthogonal Multiple Access for FDD-based Large-scale Multi-user MIMO Systems, IEEE Transactions on Wireless Communications: 16(8), pp. 5077 – 5089, 2017. DOI: 10.1109/TWC.2017.2705111.10.1109/TWC.2017.2705111Search in Google Scholar

[37] Mattera. D, Tanda. M, Bellanger. M- New Multicarrier Modulations for 5G-5G mobile communications; Spinger: pp. 165-202, 2017. DOI: 10.1007/978-3-319-34208-5_7.10.1007/978-3-319-34208-5_7Abierto DOISearch in Google Scholar

[38] L. Lei, Y. Kuang, X. Shen, C. Lin, Z. Zhong, Resource control in network assisted device to-device communications: solutions and challenges. IEEE Commun. Mag: 52(6), pp.108–117, 2014. DOI: 10.1109/MCOM.2014.6829952.10.1109/MCOM.2014.6829952Abierto DOISearch in Google Scholar

[39] Saeik Firdose, Challenges on the Validation of D2D Communications: Availability of Open-source Tools, Technical report, DOI: 10.13140/RG.2.2.29942.80967.Search in Google Scholar

[40] Y. Chen, Q. Zhao, A. Swami, Distributed spectrum sensing and access in cognitive radio networks with energy constraint, IEEE Trans. Signal Process: 57(2), pp.783–797, 2009. DOI: 10.1109/TSP.2008.2007928.10.1109/TSP.2008.2007928Abierto DOISearch in Google Scholar

[41] Li. G, et al- Spectrum Sharing for 5G-5G mobile communications; Spinger, pp. 51-73, 2017. DOI: 10.1007/978-3-319-34208-5_3.10.1007/978-3-319-34208-5_3Abierto DOISearch in Google Scholar

[42] Pandi N, kumar. A,-Matched Filter detection Spectrum Sensing in Cognitive Radio; Electronics World, Vol.123, No.1972, May 2017.Search in Google Scholar

[43] Xiang, Jie, et al, Downlink spectrum sharing for cognitive radio femtocell networks, IEEE systems journal: 4(4), pp.524-534, 2010. DOI: 10.1109/JSYST.2010.2083230.10.1109/JSYST.2010.2083230Abierto DOISearch in Google Scholar

[44] Zvanovec. S, et al, Visible light communication towards 5G, Radio engineering: 24(1), pp.1-9, 2015. DOI: 10.13164/re.2015.0001.10.13164/re.2015.0001Search in Google Scholar

[45] Dinesh. K, Kumar. N, Incredible innovation in visible light communication-light fidelity (li-fi), International journal of engineering sciences & research technology: 4(8), 2015.Search in Google Scholar

[46] Mavromoustakis, Constandinos, George. Mastorakis, and Jordi Mongay Batalla-Internet of Things (IoT) in 5G mobile technologies;Springer: 8. 2016.10.1007/978-3-319-30913-2Search in Google Scholar

[47] 5G infrastructure public private partnership-https://5g-ppp.eu/.Search in Google Scholar

[48] 5G Norma-Novel Radio Multiservice adaptive network architecture-https://5gnorma.5g-ppp.eu/.Search in Google Scholar

[49] Elayoubi, Salah Eddine, et al, 5G service requirements and operational use cases: Analysis and metis ii vision, Networks and Communications (EuCNC), 2016 European Conference on. IEEE: 2016.10.1109/EuCNC.2016.7561024Search in Google Scholar

[50] Arnold, Paul, et al, 5G radio access network architecture based on flexible functional control/user plane splits, Networks and Communications (EuCNC), 2017 European Conference on. IEEE: 2017.10.1109/EuCNC.2017.7980777Search in Google Scholar

[51] 5G XHaul-Dynamically Reconfigurable Optical-Wireless Backhaul/Fronthaul with Cognitive Control Plane for Small Cells and Cloud-RANshttp://www.5g-xhaul-project.eu/.Search in Google Scholar

[52] 5G Now-Non-Orthogonal Wavform for asynchronous signalling-http://5gnow.eu/.Search in Google Scholar

[53] Xu, Lei, et al, CogNet: A network management architecture featuring cognitive capabilities, Networks and Communications (EuCNC), 2016 European Conference on. IEEE: 2016.10.1109/EuCNC.2016.7561056Search in Google Scholar

[54] CogNet-Building an Intelligent System of Insight and Action for 5G Network Management- http://www.cognet.5g-ppp.eu/.Search in Google Scholar

[55] Holfeld, Bernd, et al, Wireless communication for factory automation: An opportunity for LTE and 5G systems, IEEE Communications Magazine: 54(6), pp.36-43, 2016.10.1109/MCOM.2016.7497764Search in Google Scholar

[56] KOI- Koordinierte Industriekommunikation; Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI-https://www.hhi.fraunhofer.de/en/departments/wn/projects/koi.html.Search in Google Scholar

[57] Weiler, Richard J, et al, Quasi-deterministic millimeter-wave channel models in MiWEBA, EURASIP Journal on Wireless Communications and Networking: 2016.10.1186/s13638-016-0568-6Search in Google Scholar

[58] MiWEBA- Millimeter Wave Evolution for Backhaul and Access- https://www.miweba.eu/#Start.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo