1. bookVolumen 18 (2018): Edición 2 (October 2018)
Detalles de la revista
License
Formato
Revista
eISSN
2286-2455
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Load Monitoring Solutions for the Smart Buildings – An Overview

Publicado en línea: 02 Nov 2018
Volumen & Edición: Volumen 18 (2018) - Edición 2 (October 2018)
Páginas: 1 - 6
Detalles de la revista
License
Formato
Revista
eISSN
2286-2455
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés

[1] C. Fischer.Feedback on household electricity consumption: a tool for saving energy. Energy Effic: vol. 1, no. 1, pp. 79–104, 2008.Search in Google Scholar

[2] S. Barker, S. Kalra, and D. Irwin. PowerPlay : Creating Virtual Power Meters through Online Load Tracking. 1st ACM Int. Conf. Embed. Syst. Energy-Efficient Build., pp. 60–69, 2014.10.1145/2674061.2674068Search in Google Scholar

[3] M. Temneanu and A.S. Ardeleanu. Hardware and software architecture of a smart meter based on electrical signature analysis, 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp.1-6, 2013.10.1109/ATEE.2013.6563499Search in Google Scholar

[4] M. Temneanu and A. Ardeleanu. Non-intrusive Hybrid Energy Monitoring System. Advanced Materials Research, vol. 837, pp. 495-499, 2014.10.4028/www.scientific.net/AMR.837.495Search in Google Scholar

[5] G. Seritan, I.Triştiu, O.Ceaki and T.Boboc. Power quality assessment for microgrid scenarios. Electrical and Power Engineering (EPE), 2016 International Conference and Exposition, pp. 723-727, 2016.10.1109/ICEPE.2016.7781434Search in Google Scholar

[6] S. Darby. The Effectiveness of Feedback on Energy Consumption a Review for Defra of the Literature on Metering, Billing. Environ. Chang. Inst. Univ. Oxford, vol. 22, no. April, pp. 1–21, 2006.Search in Google Scholar

[7] A. K. Ehrhardt-Martinez and K. Donnelly. Advanced Metering Initiatives and Residential Feedback Programs : A Meta-Review for Household Electricity-Saving Opportunities. Energy, vol. 123, no. 6, p. 128, 2010.Search in Google Scholar

[8] K. D. Lee, S. B. Leeb, L. K. Norford, P. R. Armstrong, J. Holloway, and S. R. Shaw. Estimation of variable-speed-drive power consumption from harmonic content. IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 566–574, 2005.10.1109/TEC.2005.852963Search in Google Scholar

[9] W. Wichakool, A. T. Avestruz, R. W. Cox, and S. B. Leeb. Modelling and estimating current harmonics of variable electronic loads. IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2803–2811, 2009.Search in Google Scholar

[10] Z. Wang and G. Zheng. Residential appliances identification and monitoring by a nonintrusive method. IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 80–92, 2012.10.1109/TSG.2011.2163950Search in Google Scholar

[11] Y. K. Cho and M. Gai. Projection-Recognition-Projection Method for Automatic Object Recognition and Registration for Dynamic Heavy Equipment Operations. J. Comput. Civ. Eng., vol. 28, no. 5, pp. 1–9, 2013.10.1061/(ASCE)CP.1943-5487.0000332Search in Google Scholar

[12] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey. no. 11, pp. 16838–16866, 2012.Search in Google Scholar

[13] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. Consum. Electron., vol. 57, no. 1, pp. 76–84, 2011.10.1109/TCE.2011.5735484Search in Google Scholar

[14] M. Baranski and J. Voss. Nonintrusive appliance load monitoring based on an optical sensor. in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, p. 8 pp. Vol.4.Search in Google Scholar

[15] G. W. Hart. Nonintrusive appliance load monitoring, Proc. IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.10.1109/5.192069Search in Google Scholar

[16] C. Klemenjak and P. Goldsborough. Non-Intrusive Load Monitoring: A Review and Outlook. 2016.Search in Google Scholar

[17] W. K. Lee, G. S. K. Fung, H. Y. Lam, F. H. Y. Chan, and M. Lucente. Exploration on Load Signatures. Electr. Eng., no. 725, p. 5, 2004.Search in Google Scholar

[18] F. Sultanem. Using appliance signatures for monitoring residential loads at meter panel level. IEEE Trans. Power Deliv., vol. 6, no. 4, pp. 1380–1385, 1991.10.1109/61.97667Search in Google Scholar

[19] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng. Load Signature Study — Part I : Basic Concept, Structure, and Methodology. vol. 25, no. 2, pp. 551–560, 2010.10.1109/TPWRD.2009.2033799Search in Google Scholar

[20] P. Electronics and S. Conference. A Taxonomy of Load Signatures for Single-Phase Electric Appliances. System, vol. 1, no. July 2004, pp. 24–29, 2005.Search in Google Scholar

[21] H. Lam, K. Ting, and W. Lee. Building a vector-based load taxonomy using electrical load signatures. Conf. Electr., no. June, 2005.Search in Google Scholar

[22] H. Lam, G. Fung, and W. Lee. A Novel Method to Construct Taxonomy Electrical Appliances Based on Load Signatures. IEEE Trans. Consum. Electron., vol. 53, no. 2, pp. 653–660, 2007.10.1109/TCE.2007.381742Search in Google Scholar

[23] H. Najmeddine et al. State of art on load monitoring methods, Proc. 2nd IEEE Int. Conf. Power Energy (PECon 2008), no. PECon 08, pp. 1256–1258, 2008.10.1109/PECON.2008.4762669Search in Google Scholar

[24] J. Paris. A Framework for Non-Intrusive Load Monitoring and Diagnostics. Archives, p. 260, 2006.Search in Google Scholar

[25] M. Baranski and J. Voss. Detecting patterns of appliances from total load data using a dynamic programming approach, Proc. - Fourth IEEE Int. Conf. Data Mining, ICDM 2004, pp. 327–330, 2004.Search in Google Scholar

[26] A. Schoofs, A. Guerrieri, D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli. ANNOT: Automated Electricity Data Annotation Using Wireless Sensor Networks, in 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2010, pp. 1–9.10.1109/SECON.2010.5508248Search in Google Scholar

[27] S. Park, H. Kim, H. Moon, J. Heo, and S. Yoon. Concurrent simulation platform for energy-aware smart metering systems. IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1918–1926, 2010.Search in Google Scholar

[28] T. Kato, H. S. Cho, D. Lee, T. Toyomura, and T. Yamazaki. Appliance recognition from electric current signals for information-energy integrated network in home environments. Lect. Notes Comput. Sci., vol. 5597 LNCS, pp. 150–157, 2009.Search in Google Scholar

[29] M. E. Berges, E. Goldman, H. S. Matthews, and L. Soibelman. Enhancing electricity audits in residential buildings with nonintrusive load monitoring. J. Ind. Ecol., vol. 14, no. 5, pp. 844–858, 2010.10.1111/j.1530-9290.2010.00280.xSearch in Google Scholar

[30] L. Farinaccio and R. Zmeureanu. Using a pattern recognition approach to disaggregate the total electricity consumption in a house into the major end-uses. Energy Build., vol. 30, no. 3, pp. 245–259, Aug. 1999.10.1016/S0378-7788(99)00007-9Search in Google Scholar

[31] M. T. Fitta. Load Classification and Appliance Fingerprinting for Residential Load Monitoring System. English, p. 100, 2010.Search in Google Scholar

[32] C. Cepisca, S. Ganatsios, H.Andrei, S.D. Grigorescu, and N. Taousanidis, Methods for power measurements in energy meters, The Scientific Bulletin of Electrical Engineering Faculty, 2008, year 8, no. 2, pp. 7-13.Search in Google Scholar

[33] C. Laughman et al. Power signature analysis. IEEE Power Energy Mag., vol. 1, no. 2, pp. 56–63, 2003.10.1109/MPAE.2003.1192027Search in Google Scholar

[34] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman. Training Load Monitoring Algorithms on Highly Sub-Metered Home Electricity Consumption Data. Tsinghua Sci. Technol., vol. 13, no. SUPPL. 1, pp. 406–411, 2008.10.1016/S1007-0214(08)70182-2Search in Google Scholar

[35] M. Hazas, A. Friday, and J. Scott. Look back before leaping forward: Four decades of domestic energy inquiry. IEEE Pervasive Comput., vol. 10, no. 1, pp. 13–19, 2011.10.1109/MPRV.2010.89Search in Google Scholar

[36] D. D. Sabin, D. L. Brooks, and A. Sundaram. Indices for assessing harmonic distortion from power quality measurements: definitions and benchmark data. IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 489–496, 1999.10.1109/61.754093Search in Google Scholar

[37] D. Srinivasan, W. S. Ng, and A. C. Liew. Neural-network-based signature recognition for harmonic source identification. IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 398–405, 2006.10.1109/TPWRD.2005.852370Search in Google Scholar

[38] J. Z. Kolter and M. J. Johnson. REDD : A Public Data Set for Energy Disaggregation Research. SustKDD Work., vol. xxxxx, no. 1, pp. 1–6, 2011.Search in Google Scholar

[39] S. Gupta, M. S. Reynolds, and S. N. Patel. ElectriSense: single-point sensing using EMI for electrical event detection and classification in the home. Proc. 12th ACM Int. Conf. Ubiquitous Comput., pp. 139–148, 2010.10.1145/1864349.1864375Search in Google Scholar

[40] J. Z. Kolter, S. Batra, and A. Y. Ng. Energy disaggregation via discriminative sparse coding. Adv. Neural Inf. Process. Syst., pp. 1153–1161, 2010.Search in Google Scholar

[41] O.M. Ghita, S.D. Grigorescu, H. Andrei, and N. Calin, Solution for inspection of Power Energy Equipment Using Augmented Reality, The Scientific Bulletin of Electrical Engineering Faculty, 2017, no. 1, https://doi.org/10.1515/sbeef-2016-0007.10.1515/sbeef-2016-0007Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo