Cite

[1] Barceloux D. G. Potatoes, Tomatoes, and Solanine Toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-Month 2009:55(6):391–402. doi:10.1016/j.disamonth.2009.03.00910.1016/j.disamonth.2009.03.00919446683Open DOISearch in Google Scholar

[2] Schuler K. Solanum tuberosum (Potato). Encyclopedia of Genetics. Academic Press, 2001:1848–1850. doi:10.1006/rwgn.2001.166910.1006/rwgn.2001.1669Open DOISearch in Google Scholar

[3] Potato Facts and Figures – International Potato Center. [Online]. Available: https://cipotato.org/potato/facts. [Accessed: 09.08.2017].Search in Google Scholar

[4] Kita A., Bakowska-Barczak A., Hamouz K., Kulakowska K., Lisinska G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2013:32(2):169–175. doi:10.1016/j.jfca.2013.09.00610.1016/j.jfca.2013.09.006Open DOISearch in Google Scholar

[5] Blumberga D., Barisa A., Kubule A., Klavina K., Lauka D., Muizniece I., Blumberga A., Timma L. Biotehonomika. Riga: RTU, 2016.Search in Google Scholar

[6] Glusac J., Isaschar-Ovdat S., Kukavica B., Fishman A. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Res. Int. 2017:100:407–415. doi:10.1016/j.foodres.2017.07.03410.1016/j.foodres.2017.07.03428873703Open DOISearch in Google Scholar

[7] Mahgoub H. A. M., Eisa G. S. A., Youssef M. A. H. Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt. J. Genet. Eng. Biotechnol. 2015:13:39–49. doi:10.1016/j.jgeb.2014.11.00410.1016/j.jgeb.2014.11.004629973630647565Open DOISearch in Google Scholar

[8] Friedman M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. J. Agric. Food Chem. 2006:54(23):8655–8681. doi:10.1021/jf061471t10.1021/jf061471t17090106Search in Google Scholar

[9] Rady A. M., Soliman S. N., El-Wersh A. Effect of mechanical treatments on creep behavior of potato tubers. Eng. Agric. Environ. Food 2017:10(4):282–291. doi:10.1016/j.eaef.2017.06.00110.1016/j.eaef.2017.06.001Open DOISearch in Google Scholar

[10] Koo B.-S., Kalme S., Yeo S.-H., Lee S.-J., Yoon M.-Y. Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.). Plant Physiol. Biochem. 2009:47(9):761–768. doi:10.1016/j.plaphy.2009.04.00110.1016/j.plaphy.2009.04.00119394244Search in Google Scholar

[11] Sanchez Maldonado A. F., Mudge E., Ganzle M. G., Schieber A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014:65:27–34. doi:10.1016/j.foodres.2014.06.01810.1016/j.foodres.2014.06.018Open DOISearch in Google Scholar

[12] Kappachery S., Yu J. W., Baniekal-Hiremath G., Park S. W. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. Comptes Rendus Biologies 2013:336(11–12):530–545. doi:10.1016/j.crvi.2013.09.00610.1016/j.crvi.2013.09.00624296077Open DOISearch in Google Scholar

[13] Friedman M., Kozukue N., Kim H. J., Choi S. H., Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Compos. Anal. 2017:62:69–75. doi:10.1016/j.jfca.2017.04.01910.1016/j.jfca.2017.04.019Open DOISearch in Google Scholar

[14] Abdel-Hafeez H. M., Saleh E. S. E., Tawfeek S. S., Youssef I. M. I., Abdel-Daim A. S. A. Utilization of potato peels and sugar beet pulp with and without enzyme supplementation in broiler chicken diets: effects on performance, serum biochemical indices and carcass traits. J. Anim. Physiol. Anim. Nutr. 2017. doi:10.1111/jpn.1265610.1111/jpn.1265628304103Open DOISearch in Google Scholar

[15] Huang W., Serra O., Dastmalchi K., Jin L., Yang L., Stark R. E. Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017:65(10):2258–2274. doi:10.1021/acs.jafc.6b0517910.1021/acs.jafc.6b0517928215068Search in Google Scholar

[16] Friedman M., Roitman J. N., Kozukue N. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 2003:51(10):2964–2973. doi:10.1021/jf021146f10.1021/jf021146f12720378Search in Google Scholar

[17] Dai J., Mumper R. J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010:15(10):7313–7352. doi:10.3390/molecules1510731310.3390/molecules15107313625914620966876Search in Google Scholar

[18] Amado I. R., Franco D., Sanchez M., Zapata C., Vazquez J. A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014:165:290–299. doi:10.1016/j.foodchem.2014.05.10310.1016/j.foodchem.2014.05.10325038678Open DOISearch in Google Scholar

[19] Singh A., Sabally K., Kubow S., Donnelly D. J., Gariepy Y., Orsat V., Raghavan G. S. V. Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 2011:16(3):2218–2232. doi:10.3390/molecules1603221810.3390/16032218Open DOISearch in Google Scholar

[20] Proestos C., Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT – Food Sci. Technol. 2008:41(4):652–659. doi:10.1016/j.lwt.2007.04.01310.1016/j.lwt.2007.04.013Open DOISearch in Google Scholar

[21] Singh P. P., Saldana M. D. A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011:44(8):2452–2458. doi:10.1016/j.foodres.2011.02.00610.1016/j.foodres.2011.02.006Search in Google Scholar

[22] Ogutu F. O., Mu T. H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultraso. Sonochem. 2017:38:726–734. doi:10.1016/j.ultsonch.2016.08.01410.1016/j.ultsonch.2016.08.01427617769Open DOISearch in Google Scholar

[23] Vinatoru M., Toma M., Radu O., Filip P. I., Lazurca D., Mason T. J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem. 1997:4(2):135–139. doi:10.1016/S1350-4177(97)83207-510.1016/S1350-4177(97)83207-5Open DOISearch in Google Scholar

[24] Mason T. J., Paniwnyk L., Lorimer J. P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996:3(3):S253–S260. doi:10.1016/S1350-4177(96)00034-X10.1016/S1350-4177(96)00034-XOpen DOISearch in Google Scholar

[25] Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001:8(3):303–313. doi:10.1016/S1350-4177(01)00071-210.1016/S1350-4177(01)00071-2Open DOISearch in Google Scholar

[26] Mendiola J. A., Herrero M., Cifuentes A., Ibanez E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A 2007:1152(1–2):234–246. doi:10.1016/j.chroma.2007.02.04610.1016/j.chroma.2007.02.046Open DOISearch in Google Scholar

[27] Sparr Eskilsson C., Bjorklund E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000:902(1):227–250. doi:10.1016/S0021-9673(00)00921-310.1016/S0021-9673(00)00921-3Open DOISearch in Google Scholar

[28] Bruder U. Bioplastics and Biocomposites. User’s Guide to Plastic. Munich: Carl Hanser Verlag, 2015. doi:10.3139/9781569905739.00610.3139/9781569905739.006Open DOISearch in Google Scholar

[29] Sagnelli D., Hebelstrup K. H., Leroy E., Rolland-Sabate A., Guilois S., Kirkensgaard J. J. K., Mortensen K., Lourdin D., Blennow A. Plant-crafted starches for bioplastics production. Carbohydr. Polym. 2016:152:398–408. doi:10.1016/j.carbpol.2016.07.03910.1016/j.carbpol.2016.07.03927516287Open DOISearch in Google Scholar

[30] Shah A. A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008:26(3):246–265. doi:10.1016/j.biotechadv.2007.12.00510.1016/j.biotechadv.2007.12.00518337047Open DOISearch in Google Scholar

[31] Gomez-Heincke D., Martinez I., Stading M., Gallegos C., Partal P. Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocoll. 2017:73:21–29. doi:10.1016/j.foodhyd.2017.06.02210.1016/j.foodhyd.2017.06.022Open DOISearch in Google Scholar

[32] Gomez-Martinez D., Partal P., Martinez I., Gallegos C. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics. Bioresour. Technol. 2009:100(5):1828–1832. doi:10.1016/j.biortech.2008.10.01610.1016/j.biortech.2008.10.01619022663Open DOISearch in Google Scholar

[33] Mooney B. P. The second green revolution? Production of plant-based biodegradable plastics. Biochem J 2009:418(2):219–232. doi:10.1042/BJ2008176910.1042/BJ20081769Open DOISearch in Google Scholar

[34] Fewell A. M., Roddick J. G. Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 1993:33(2):323–328. doi:10.1016/0031-9422(93)85511-O10.1016/0031-9422(93)85511-OOpen DOISearch in Google Scholar

[35] Fewell A. M., Roddick J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 1997:101(5):597–603. doi:10.1017/S095375629600297310.1017/S0953756296002973Open DOISearch in Google Scholar

[36] Friedman M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 2004:1054(1–2):143–155. doi:10.1016/j.chroma.2004.04.04910.1016/j.chroma.2004.04.04915553139Open DOISearch in Google Scholar

[37] Jarvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT – Food Sci. Technol. 2011:44(6):1355–1361. doi:10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005Open DOISearch in Google Scholar

[38] Szafranek B. M., Synak E. E. Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 2006:67:80–90. doi:10.1016/j.phytochem.2005.10.01210.1016/j.phytochem.2005.10.01216310230Open DOISearch in Google Scholar

[39] Graca J., Pereira H., Suberin Structure in Potato Periderm: Glycerol, Long-Chain Monomers, and Glyceryl and Feruloyl Dimers. Journal of Agricultural and Food Chemistry 2000:48(11):5476–5483. doi:10.1021/jf000612310.1021/jf000612311087505Open DOISearch in Google Scholar

[40] Outline C. Starch and derivatives as pharmaceutical excipients. Control. Drug Deliv. 2015:21–84.10.1016/B978-1-907568-45-9.00002-0Search in Google Scholar

[41] Lu D. R., Xiao C. M., Xu S. J. Starch-based completely biodegradable polymer materials. Express Polym. Lett. 2009:3(6):366–375. doi:10.3144/expresspolymlett.2009.4610.3144/expresspolymlett.2009.46Open DOISearch in Google Scholar

[42] Matharu A. S., de Melo E. M., Houghton J. A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016:215:123–130. doi:10.1016/j.biortech.2016.03.03910.1016/j.biortech.2016.03.03926996261Open DOISearch in Google Scholar

[43] Kubule A., Komisarova T., Blumberga D. Optimization methodology for complete use of bio-resources. Energy Procedia 2017:113:28–34. doi:10.1016/j.egypro.2017.04.00910.1016/j.egypro.2017.04.009Open DOISearch in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other