1. bookVolumen 24 (2016): Edición 3 (September 2016)
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

In Vivo Testing of Xenogeneic Acellular Aortic Valves Seeded with Stem Cells

Publicado en línea: 15 Oct 2016
Volumen & Edición: Volumen 24 (2016) - Edición 3 (September 2016)
Páginas: 343 - 346
Recibido: 16 Apr 2015
Aceptado: 26 Aug 2016
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Simionescu DT, Chen J, Jaeggli M, Wang B, Liao J. Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering. J Healthc Eng. 2012 Jun;3(2):179-202. DOI: 10.1260/2040-2295.3.2.179.10.1260/2040-2295.3.2.179355262323355946Search in Google Scholar

2. Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH. The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials. 2014 Feb;35(6):1833-44. DOI: 10.1016/j.biomaterials. 2013.10.061.Search in Google Scholar

3. Weber B, Dijkman PE, Scherman J, Sanders B, Emmert MY, Grunenfelder J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013 Oct;34(30):7269-80. DOI: 10.1016/j.biomaterials.2013.04.059.10.1016/j.biomaterials.2013.04.05923810254Search in Google Scholar

4. Tudorache I, Calistru A, Baraki H, Meyer T, Hoffler K, Sarikouch S, et al. Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Eng Part A. 2013 Aug;19(15-16):1686-94. DOI: 10.1089/ ten.tea.2012.0074.10.1089/ten.tea.2012.0074369995523488793Search in Google Scholar

5. Sierad LN, Shaw EL, Bina A, Brazile B, Rierson N, Patnaik SS, et al. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System. Tissue Eng Part C Methods. 2015 Dec;21(12):1284-96. DOI: 10.1089/ten.tec.2015.0170.10.1089/ten.tec.2015.0170Search in Google Scholar

6. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362-9. DOI: 10.1080/14653240310003026.10.1080/1465324031000302614578098Search in Google Scholar

7. Schoen FJ. Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol. 2011 Oct;22(5):698-705. DOI: 10.1016/j.copbio.2011.01.004.10.1016/j.copbio.2011.01.00421315575Search in Google Scholar

8. Vesely I. Heart valve tissue engineering. Circ Res. 2005 Oct 14;97(8):743-55. DOI: 10.1161/01. RES.0000185326.04010.9f.Search in Google Scholar

9. Schoen FJ. Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis. 1998 Mar;7(2):174-9.Search in Google Scholar

10. Harpa MM, Movileanu I, Sierad LN, Cotoi OS, Suciu H, Sircuta C, et al. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells. Rev Romana Med Lab. 2015;23(4):415-29. DOI: 10.1515/rrlm-2015-0046. 10.1515/rrlm-2015-0046Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo