1. bookVolumen 24 (2016): Edición 2 (June 2016)
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Markers of cognitive impairment in patients with type 2 diabetes

Publicado en línea: 28 Jun 2016
Volumen & Edición: Volumen 24 (2016) - Edición 2 (June 2016)
Páginas: 161 - 176
Recibido: 28 Mar 2016
Aceptado: 10 May 2016
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Background. The study aimed to evaluate the correlations of cognitive function with metabolic, nutritional, hormonal and immunologic parameters in patients with type 2 diabetes (T2D), in order to identify markers of cognitive impairment.

Material and methods. This cross-sectional study included 216 T2D patients and 23 healthy individuals (HC). The cognitive status was evaluated by the MoCA test. From HC and 145 T2D patients several parameters were also determined: C-peptide, vitamin B12, high-sensitivity CRP (by chemiluminescent immunometric assay), HbA1c, lipids, cortisol, TSH, Mg (by a Cobas 6000 analyzer), glucose (by glucose-oxidase method) and leptin and adiponectin (by ELISA method). Statistical significance was set at p < 0.05.

Results. There was a significant difference in the MoCA scores between HC and T2D groups (26.0(17.0-29.0) vs. 23.0(13.0- 31.0) points; p: 0.004). T2D patients with cognitive dysfunction were significantly older and less formally educated (p < 0.0001). Age negatively correlated with MoCA scores (-0.31; 95%CI:-0.42,-0.18; p < 0.0001). T2D patients had significantly lower visuospatial/executive (4.0(0.0-5.0) vs. 5.0(2.0-5.0) points; p: 0.04) and delayed recall scores (2.0(0.0- 5.0) vs. 3.0(1.0-5.0) points; p: 0.03) and lower serum Mg concentrations (0.81(0.12-0.99) vs. 0.92(0.41-1.35) mmol/l, p < 0.0001). Serum Mg levels positively correlated with MoCA scores (0.24, 95%CI: 0.07, 0.39; p: 0.003) and with visuospatial/ executive (0.30; 95%CI: 0.14, 0.45; p: 0.0002) and naming functions (0.18; 95%CI: 0.01, 0.34; p: 0.02).

Conclusions. Patients with T2D had significant cognitive impairment, with decrements in the visuospatial/executive and delayed recall domains. Younger age and higher education correlated with better cognitive function. Serum Mg levels correlated positively with overall cognitive function and with visuospatial/executive and naming domains.

Keywords

1. Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ. Co+gnitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev. 2010;26(7):507-19. DOI: 10.1002/dmrr.1112.10.1002/dmrr.111220799243Search in Google Scholar

2. Feinkohl I, Price JF, Strachan MW, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res Ther. 2015;7(1):46. DOI: 10.1186/s13195-015-0130-5.10.1186/s13195-015-0130-5446063526060511Search in Google Scholar

3. Bordier L, Doucet J, Boudet J, Bauduceau B. Update on cognitive decline and dementia in elderly patients with diabetes. Diabetes Metab. 2014;40(5):331-7. DOI: 10.1016/j.diabet.2014.02.002.10.1016/j.diabet.2014.02.00224703603Search in Google Scholar

4. American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care 2015;38(Suppl. 1):S41-S48.10.2337/dc15-S01025537707Search in Google Scholar

5. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA:A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc 53:695-699, 2005. DOI: 10.1111/j.1532-5415.2005.53221.x.10.1111/j.1532-5415.2005.53221.x15817019Search in Google Scholar

6. HOMA software downloaded from site https://www.dtu.ox.ac.uk/homacalculator/download.php.Search in Google Scholar

7. Cernea S, Zoltai C, Berbecilă D, Şular FL. Prevalence of depression, anxiety and cognitive impairment in patients with type 2 diabetes from the Central part of Romania. Acta Medica Marisiensis. 2016 Apr 27; [Epub ahead of print]. DOI: 10.1515/amma-2016-0014.10.1515/amma-2016-0014Search in Google Scholar

8. Mayeda ER, Whitmer RA, Yaffe K. Diabetes and cognition. Clin Geriatr Med. 2015;31(1):101-15. DOI: 10.1016/j.cger.2014.08.021.10.1016/j.cger.2014.08.021437022125453304Search in Google Scholar

9. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes. 2014;63(7):2244-52. DOI: 10.2337/db14-0348.10.2337/db14-034824931032Search in Google Scholar

10. Jongen C, van der Grond J, Kappelle LJ, Biessels GJ, Viergever MA, Pluim JP. Utrecht Diabetic Encephalopathy Study Group. Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabetologia. 2007;50(7):1509-16. DOI: 10.1007/s00125-007-0688-y.10.1007/s00125-007-0688-y191430017492428Search in Google Scholar

11. Reijmer YD, van den Berg E, de Bresser J, Kessels RP, Kappelle LJ, Algra A, et al. Utrecht Diabetic Encephalopathy Study Group. Accelerated cognitive decline in patients with type 2 diabetes:MRI correlates and risk factors. Diabetes Metab Res Rev. 2011;27(2):195-202. DOI: 10.1002/dmrr.1163.10.1002/dmrr.116321294241Search in Google Scholar

12. Guerrero-Berroa E, Ravona-Springer R, Schmeidler J, Silverman JM, Sano M, Koifmann K, et al. Age, gender, and education are associated with cognitive performance in an older Israeli sample with type 2 diabetes. Int J Geriatr Psychiatry. 2014;29(3):299-309. DOI: 10.1002/gps.4008.10.1002/gps.4008391824223925856Search in Google Scholar

13. Hayashi K, Kurioka S, Yamaguchi T, Morita M, Kanazawa I, Takase H, et al. Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese people with type 2 diabetes. Diabetes Res Clin Pract. 2011;94(2):180-5. DOI: 10.1016/j.diabres.2011.07.002.10.1016/j.diabres.2011.07.00221835484Search in Google Scholar

14. Ruis C, Biessels GJ, Gorter KJ, van den Donk M, Kappelle LJ, Rutten GE. Cognition in the early stage of type 2 diabetes. Diabetes Care. 2009;32(7):1261-5. DOI: 10.2337/dc08-2143.10.2337/dc08-2143269974119366968Search in Google Scholar

15. Fischer AL, de Frias CM, Yeung SE, Dixon RA. Short-term longitudinal trends in cognitive per formance in older adults with type 2 diabetes. J Clin Exp Neuropsychol. 2009;31(7):809-22. DOI: 10.1080/13803390802537636.10.1080/13803390802537636282909819142776Search in Google Scholar

16. van den Berg E, Reijmer YD, de Bresser J, Kessels RP, Kappelle LJ, Biessels GJ. Utrecht Diabetic Encephalopathy Study Group. A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus. Diabetologia. 2010;53(1):58-65. DOI: 10.1007/s00125-009-1571-9.10.1007/s00125-009-1571-9278993519882137Search in Google Scholar

17. Mori Y, Futamura A, Murakami H, Kohashi K, Hirano T, Kawamura M. Increased detection of mild cognitive impairment with type 2 diabetes mellitus using the Japanese version of the Montreal Cognitive Assessment: A pilot study. Neurology and Clinical Neuroscience. 2015, 3(3):89-93. DOI: 10.1111/ncn3.153.10.1111/ncn3.153Search in Google Scholar

18. Sadanand S, Balachandar R, Bharath S. Memory and executive functions in persons with type 2 diabetes:a meta- analysis. Diabetes Metab Res Rev. 2016;32(2):132-42. DOI: 10.1002/dmrr.2664.10.1002/dmrr.266425963303Search in Google Scholar

19. Spauwen PJ, Köhler S, Verhey FR, Stehouwer CD, van Boxtel MP. Effects of type 2 diabetes on 12-year cognitive change:results from the Maastricht Aging Study. Diabetes Care. 2013;36(6):1554-61. DOI: 10.2337/dc12-0746.10.2337/dc12-0746366184823275366Search in Google Scholar

20. Samaras K, Lutgers HL, Kochan NA, Crawford JD, Campbell LV, Wen W, et al. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study. Age (Dordr). 2014;36(2):977-93. DOI: 10.1007/s11357-013-9613-0.10.1007/s11357-013-9613-0403924624402401Search in Google Scholar

21. Julayanont P, Phillips N, Chertkow H, Nasreddine ZS. Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In Larner A. J. (ed). Cognitive Screening Instruments: A Practical Approach. 2013, Springer-Verlag, pp:111-51. DOI: 10.1007/978-1-4471-2452-8_6.10.1007/978-1-4471-2452-8_6Search in Google Scholar

22. Cherbuin N, Sachdev P, Anstey KJ. Higher normal fasting plasma glucose is associated with hippocampal atrophy: The PATH Study. Neurology. 2012;79(10):1019-26. DOI: 10.1212/WNL.0b013e31826846de.10.1212/WNL.0b013e31826846de22946113Search in Google Scholar

23. Jones N, Riby LM, Mitchell RL, Smith MA. Type 2 diabetes and memory: using neuroimaging to understand the mechanisms. Curr Diabetes Rev. 2014;10(2):118-23. DOI: 10.2174/1573399810666140425160811.10.2174/157339981066614042516081124766069Search in Google Scholar

24. Li R, Singh M. Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrinol. 2014;35(3):385-403. DOI: 10.1016/j. yfrne.2014.01.002.Search in Google Scholar

25. Corsonello A, Pedone C, Pahor M, Malara A, Carosella L, Mazzei B, et al. Gruppo Italiano di Farmacovigilanza nell’Anziano (GIFA). Serum magnesium levels and cognitive impairment in hospitalized hypertensive patients. Magnes Res. 2001;14(4):273-82.Search in Google Scholar

26. Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ. Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res. 2011;24(3):S115-21.10.1684/mrh.2011.028721951617Search in Google Scholar

27. Andrási E, Páli N, Molnár Z, Kösel S. Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis. 2005;7(4):273-84.10.3233/JAD-2005-7402Search in Google Scholar

28. Gerhardsson L, Lundh T, Minthon L, Londos E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(6):508-15. DOI: 10.1159/000129365.10.1159/00012936518463412Search in Google Scholar

29. Cherbuin N, Kumar R, Sachdev PS, Anstey KJ. Dietary Mineral Intake and Risk of Mild Cognitive Impairment: The PATH through Life Project. Front Aging Neurosci. 2014;6:4. DOI: 10.3389/fnagi.2014.00004.10.3389/fnagi.2014.00004391243324550825Search in Google Scholar

30. Gómez-Ramos A, Domínguez J, Zafra D, Corominola H, Gomis R, Guinovart JJ, et al. Inhibition of GSK3 dependent tau phosphorylation by metals. Curr Alzheimer Res. 2006;3(2):123-7. DOI: 10.2174/156720506776383059.10.2174/15672050677638305916611012Search in Google Scholar

31. Yu J, Sun M, Chen Z, Lu J, Liu Y, Zhou L, et al. Magnesium modulates amyloid-beta protein precursor trafficking and processing. J Alzheimers Dis. 2010;20(4):1091-106.10.3233/JAD-2010-09144420413885Search in Google Scholar

32. Wang P, Yu X, Guan PP, Guo JW, Wang Y, Zhang Y, et al. Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β. Cell Mol Immunol. 2015 Nov 9. [Epub ahead of print]. DOI: 10.1038/cmi.2015.93.10.1038/cmi.2015.93542308726549801Search in Google Scholar

33. Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, et al. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One. 2014;9(9):e108645. DOI: 10.1371/journal.pone.0108645.10.1371/journal.pone.0108645418255425268773Search in Google Scholar

34. Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World J Diabetes. 2015;6(10):1152-7. DOI: 10.4239/wjd.v6.i10.1152. 10.4239/wjd.v6.i10.1152454966526322160Search in Google Scholar

35. Liu G, Weinger JG, Lu ZL, Xue F, Sadeghpour S. Efficacy and Safety of MMFS-01, a Synapse Density Enhancer, for Treating Cognitive Impairment in Older Adults: A Randomized, Double-Blind, Placebo- Controlled Trial. J Alzheimers Dis. 2015;49(4):971-90. DOI: 10.3233/JAD-150538.10.3233/JAD-150538492782326519439Search in Google Scholar

36. West R, Beeri MS, Schmeidler J, Hannigan CM, Angelo G, Grossman HT, et al. Better memory functioning associated with higher total and LDL cholesterol levels in very elderly subjects without the APOE4 allele. Am J Geriatr Psychiatry. 2008;16(9):781-5. DOI: 10.1097/ JGP.0b013e3181812790.10.1097/JGP.0b013e3181812790261455518757771Search in Google Scholar

37. Leritz EC, McGlinchey RE, Salat DH, Milberg WP. Elevated levels of serum cholesterol are associated with better performance on tasks of episodic memory. Metab Brain Dis. 2016;31(2):465-73. DOI: 10.1007/ s11011-016-9797-y.10.1007/s11011-016-9797-y491347426873100Search in Google Scholar

38. Wang SH, Huang Y, Yuan Y, Xia WQ, Wang P, Huang R. LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses. Lipids Health Dis. 2014;13:175. DOI: 10.1186/1476-511X-13-175.10.1186/1476-511X-13-175425803925413784Search in Google Scholar

39. Gunstad J, Spitznagel MB, Keary TA, Glickman E, Alexander T, Karrer J, et al. Serum leptin levels are associated with cognitive function in older adults. Brain Res. 2008;1230:233-6. DOI: 10.1016/j.brainres.2008.07.045.10.1016/j.brainres.2008.07.04518675793Search in Google Scholar

40. Labad J, Price JF, Strachan MW, Deary IJ, Seckl JR, Sattar N, et al. Edinburgh Type 2 Diabetes Study Investigators. Serum leptin and cognitive function in people with type 2 diabetes. Neurobiol Aging. 2012;33(12):2938-41. DOI: 10.1016/j.neurobiolaging.2012.02.026.10.1016/j.neurobiolaging.2012.02.02622475620Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo