Acceso abierto

Testing of thermal fatigue resistance of tools and rolls for hot working


Cite

[1] Garza Montes de Oca, N.F., Colas, R., Rainfort, W.M. (2011): On the damage of work roll grade high speed steel by thermal cycling. Engineering Failure analysis, 18, pp. 1576-1583.10.1016/j.engfailanal.2011.06.001Search in Google Scholar

[2] Haddler, N., Fissolo, A., Maillot, V. (2005): Thermal fatigue crack networks: a computational study. International Journal of Solids and Structures, 42, pp. 771-788.Search in Google Scholar

[3] Persson, A., Hogmark, S., Bergström, J. (2004): Simulation and evaluation of thermal fatigue cracking of hot work tool steel. International Journal of Fatigue, 26, pp. 1095-1107.10.1016/j.ijfatigue.2004.03.005Open DOISearch in Google Scholar

[4] Amiable, S., Chapuliot, S., Constantinescu, A., Fissolo, A. (2006): A comparison of life time prediction methods for a thermal fatigue experiment. International Journal of Fatigue, 28, pp. 692-706.10.1016/j.ijfatigue.2005.09.002Open DOISearch in Google Scholar

[5] Absi, J., Glandus, J.C. (2004): Improved methods for severe thermal shocks testing of ceramics by water quenching. Journal of European Ceramic society, 24, pp. 2835-2838.10.1016/j.jeurceramsoc.2003.09.024Search in Google Scholar

[6] Marsh, D.J. (1981): A thermal shock fatigue study of type 304 and 316 stainless steels. Fatigue of Engineering Materials and Structures, 4/2, pp. 179-195.10.1111/j.1460-2695.1981.tb01119.xSearch in Google Scholar

[7] Hadder, N., Fissolo, A. (2005): 2D simulation of the initiation and propagation of crack array under thermal fatigue. Nuclear Engineering and Design, 235, pp. 945-964.10.1016/j.nucengdes.2004.12.005Search in Google Scholar

[8] Pellizzari, M., Molinari, A., Straffelini, G. (2003): Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel. Materials Science and Engineering, 352, pp. 186-194.10.1016/S0921-5093(02)00867-5Search in Google Scholar

[9] Delagnes, D., Lamesle, P., Mathon, M.H., Mebarki, N., Levaillant, C. (2005): Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. Materials Science and Engineering, 394, pp. 435-444.10.1016/j.msea.2004.11.050Search in Google Scholar