Acceso abierto

Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo


Cite

Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Ann Rev Biomed Eng 2014; 16: 295-320.YarmushMLGolbergASersaGKotnikTMiklavcicDElectroporation-based technologies for medicine: principles, applications, and challengesAnn Rev Biomed Eng20141629532010.1146/annurev-bioeng-071813-104622Search in Google Scholar

Neumann E, Kakorin S, Toensing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 1999; 48: 3-16.NeumannEKakorinSToensingKFundamentals of electroporative delivery of drugs and genesBioelectrochem Bioenerg19994831610.1016/S0302-4598(99)00008-2Search in Google Scholar

Weaver JC. Electroporation of cells and tissues. IEEE Trans Plasma Sci 2000; 28: 24-33.WeaverJCElectroporation of cells and tissuesIEEE Trans Plasma Sci200028243310.1201/9781420049510.ch94Search in Google Scholar

Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M. Cell membrane electroporation-part 1: the phenomenon. IEEE Electr Insul M 2012; 28: 14-23.KotnikTKramarPPuciharGMiklavcicDTarekMCell membrane electroporation-part 1: the phenomenonIEEE Electr Insul M201228142310.1109/MEI.2012.6268438Search in Google Scholar

Delemotte L, Tarek M. Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 2012; 245: 531-43.DelemotteLTarekMMolecular dynamics simulations of lipid membrane electroporationJ Membr Biol20122455314310.1007/s00232-012-9434-622644388Search in Google Scholar

Haberl JS, Abbas M. Development of graphical indices for viewing building energy data: Part II. J Sol Energy Eng Trans ASME 1998; 120: 162-7.HaberlJSAbbasMDevelopment of graphical indices for viewing building energy data: Part IIJ Sol Energy Eng Trans ASME1998120162710.1115/1.2888065Search in Google Scholar

Miklavcic D, Mali B, Kos B, Heller R, Sersa G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 2014; 13: 29.MiklavcicDMaliBKosBHellerRSersaGElectrochemotherapy: from the drawing board into medical practiceBiomed Eng Online2014132910.1186/1475-925X-13-29399570524621079Search in Google Scholar

Scheffer HJ, Nielsen K, de Jong MC, van Tilborg AA, Vieveen JM, Bouwman AR, et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014; 25: 997-1011; quiz 1011.SchefferHJNielsenKde JongMCvan TilborgAAVieveenJMBouwmanARIrreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacyJ Vasc Interv Radiol2014259971011quiz 101110.1016/j.jvir.2014.01.02824656178Search in Google Scholar

Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 2003; 17: 1493-5.BeebeSJFoxPMRecLJWillisELSchoenbach KH. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cellsFASEB J2003171493510.1096/fj.02-0859fje12824299Search in Google Scholar

Zupanic A, Kos B, Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012; 57: 5425-40.ZupanicAKosBMiklavcicDTreatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporationPhys Med Biol20125754254010.1088/0031-9155/57/17/542522864181Search in Google Scholar

Kos B, Voigt P, Miklavcic D, Moche M. Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol 2015; 49: 234-41.KosBVoigtPMiklavcicDMocheMCareful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE)Radiol Oncol2015492344110.1515/raon-2015-0031457721926401128Search in Google Scholar

Miklavcic D. Network for development of electroporation-based technologies and treatments: COST TD1104. J Membr Biol 2012; 245: 591-8.MiklavcicDNetwork for development of electroporation-based technologies and treatments: COST TD1104J Membr Biol2012245591810.1007/s00232-012-9493-8346978822922776Search in Google Scholar

Curatolo P, Quaglino P, Marenco F, Mancini M, Nardo T, Mortera C, et al. Electrochemotherapy in the treatment of Kaposi sarcoma sutaneous lesions: a two-center prospective phase II trial. Ann Surg Oncol 2012; 19: 192-8.CuratoloPQuaglinoPMarencoFManciniMNardoTMorteraCElectrochemotherapy in the treatment of Kaposi sarcoma sutaneous lesions: a two-center prospective phase II trialAnn Surg Oncol201219192810.1245/s10434-011-1860-721822561Search in Google Scholar

Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, et al. Electrochemotherapy - an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 2006; 4: 3-13.MartyMSersaGGarbayJRGehlJCollinsCGSnojMElectrochemotherapy - an easy highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) studyEJC Suppl2006431310.1016/j.ejcsup.2006.08.002Search in Google Scholar

Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M. Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 2008; 34: 232-40.SersaGMiklavcicDCemazarMRudolfZPuciharGSnojMElectrochemotherapy in treatment of tumoursEur J Surg Oncol2008342324010.1016/j.ejso.2007.05.01617614247Search in Google Scholar

Gehl J, Geertsen PF. Palliation of haemorrhaging and ulcerated cutaneous tumours using electrochemotherapy. EJC Suppl 2006; 4: 35-7.GehlJGeertsenPFPalliation of haemorrhaging and ulcerated cutaneous tumours using electrochemotherapyEJC Suppl2006435710.1016/j.ejcsup.2006.07.007Search in Google Scholar

Valpione S, Campana LG, Pigozzo J, Chiarion-Sileni V. Consolidation electrochemotherapy with bleomycin in metastatic melanoma during treatment with dabrafenib. Radiol Oncol 2015; 49: 71-4.ValpioneSCampanaLGPigozzoJChiarion-SileniVConsolidation electrochemotherapy with bleomycin in metastatic melanoma during treatment with dabrafenibRadiol Oncol20154971410.2478/raon-2014-0035436260925810704Search in Google Scholar

Mir LM, Gehl J, Sersa G, Collins CG, Garbay JR, Billard V, et al. Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator (TM) by means of invasive or non-invasive electrodes. EJC Suppl 2006; 4: 14-25.MirLMGehlJSersaGCollinsCGGarbayJRBillardVStandard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator (TM) by means of invasive or non-invasive electrodesEJC Suppl20064142510.1016/j.ejcsup.2006.08.003Search in Google Scholar

Edhemovic I, Brecelj E, Gasljevic G, Music MM, Gorjup V, Mali B, et al. Intraoperative Electrochemotherapy of colorectal liver metastases. J Surg Oncol 2014; 110: 320-7.EdhemovicIBreceljEGasljevicGMusicMMGorjupVMaliBIntraoperative Electrochemotherapy of colorectal liver metastasesJ Surg Oncol2014110320710.1002/jso.2362524782355Search in Google Scholar

Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D. Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 2013; 39: 4-16.MaliBJarmTSnojMSersaGMiklavcicDAntitumor effectiveness of electrochemotherapy: a systematic review and meta-analysisEur J Surg Oncol20133941610.1016/j.ejso.2012.08.01622980492Search in Google Scholar

Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, et al. Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 2010; 9.MiklavcicDSnojMZupanicAKosBCemazarMKropivnikMTowards treatment planning and treatment of deep-seated solid tumors by electrochemotherapyBiomed Eng Online2010910.1186/1475-925X-9-10284368420178589Search in Google Scholar

Miklavcic D, Sersa G, Brecelj E, Gehl J, Soden D, Bianchi G, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 2012; 50: 1213-25.MiklavcicDSersaGBreceljEGehlJSodenDBianchiGElectrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumorsMed Biol Eng Comput20125012132510.1007/s11517-012-0991-8351469923179413Search in Google Scholar

Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, et al. Electrochemotherapy in veterinary oncology. J Vet Intern Med 2008; 22: 826-31.CemazarMTamzaliYSersaGTozonNMirLMMiklavcicDElectrochemotherapy in veterinary oncologyJ Vet Intern Med2008228263110.1111/j.1939-1676.2008.0117.x18537879Search in Google Scholar

Tamzali Y, Borde L, Rols MP, Golzio M, Lyazrhi F, Teissie J. Successful treatment of equine sarcoids with cisplatin electrochemotherapy: A retrospective study of 48 cases. Equine Vet J 2012; 44: 214-20.TamzaliYBordeLRolsMPGolzioMLyazrhiFTeissieJSuccessful treatment of equine sarcoids with cisplatin electrochemotherapy: A retrospective study of 48 casesEquine Vet J2012442142010.1111/j.2042-3306.2011.00425.x21793876Search in Google Scholar

Tozon N, Kodre V, Sersa G, Cemazar M. Effective treatment of perianal tumors in dogs with electrochemotherapy. Anticancer Res 2005; 25: 839-45.TozonNKodreVSersaGCemazarMEffective treatment of perianal tumors in dogs with electrochemotherapyAnticancer Res20052583945Search in Google Scholar

Tozon N, Pavlin D, Sersa G, Dolinsek T, Cemazar M. Electrochemotherapy with intravenous bleomycin injection: an observational study in superficial squamous cell carcinoma in cats. J Feline Med Surg 2014; 16: 291-9.TozonNPavlinDSersaGDolinsekTCemazarMElectrochemotherapy with intravenous bleomycin injection: an observational study in superficial squamous cell carcinoma in catsJ Feline Med Surg201416291910.1177/1098612X1350707124127456Search in Google Scholar

Rebersek M, Miklavcic D, Bertacchini C, Sack M. Cell membrane electroporation-part 3: the equipment. IEEE Electr Insul M 2014; 30: 8-18.RebersekMMiklavcicDBertacchiniCSackMCell membrane electroporation-part 3: the equipmentIEEE Electr Insul M20143081810.1109/MEI.2014.6804737Search in Google Scholar

Belton M, Prato FS, Rozanski C, Carson JJL. Effect of 100 mT homogeneous static magnetic field on [Ca2+](c) response to ATP in HL-60 cells following GSH depletion. Bioelectromagnetics 2009; 30: 322-9.BeltonMPratoFSRozanskiCCarsonJJLEffect of 100 mT homogeneous static magnetic field on [Ca2+](c) response to ATP in HL-60 cells following GSH depletionBioelectromagnetics200930322910.1002/bem.2047519204977Search in Google Scholar

Bodega G, Forcada I, Suarez I, Fernandez B. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture. Environ Res 2005; 98: 355-62.BodegaGForcadaISuarezIFernandezBAcute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton stress proteins and proliferation of astroglial cells in cultureEnviron Res2005983556210.1016/j.envres.2004.12.01015910790Search in Google Scholar

Chen C, Evans JA, Robinson MP, Smye SW, O’Toole P. Electroporation of cells using EM induction of ac fields by a magnetic stimulator. Phys Med Biol 2010; 55: 1219-29.ChenCEvansJARobinsonMPSmyeSWO’ToolePElectroporation of cells using EM induction of ac fields by a magnetic stimulatorPhys Med Biol20105512192910.1088/0031-9155/55/4/02120124654Search in Google Scholar

Dini L, Dwikat M, Panzarini E, Vergallo C, Tenuzzo B. Morphofunctional study of 12-O-tetradecanoyl-13-phorbol scetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field. Bioelectromagnetics 2009; 30: 352-64.DiniLDwikatMPanzariniEVergalloCTenuzzoBMorphofunctional study of 12-O-tetradecanoyl-13-phorbol scetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic fieldBioelectromagnetics2009303526410.1002/bem.2047419189300Search in Google Scholar

Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, et al. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A 1998; 54: 63-76.FlipoDFournierMBenquetCRouxPLe BoulaireCPinskyCIncreased apoptosis changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic fieldJ Toxicol Environ Health A199854637610.1080/009841098159033Search in Google Scholar

Ikehara T, Nishisako H, Minami Y, Ichinose H, Shiraishi T, Kitamura M, et al. Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca2+ in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells. Biochim Biophys Acta 2010; 1800: 1221-30.IkeharaTNishisakoHMinamiYIchinoseHShiraishiTKitamuraMEffects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca2+ in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cellsBiochim Biophys Acta2010180012213010.1016/j.bbagen.2010.09.001Search in Google Scholar

Towhidi L, Firoozabadi SMP, Mozdarani H, Miklavcic D. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiol Oncol 2012; 46: 119-25.TowhidiLFiroozabadiSMPMozdaraniHMiklavcicDLucifer Yellow uptake by CHO cells exposed to magnetic and electric pulsesRadiol Oncol2012461192510.2478/v10019-012-0014-2Search in Google Scholar

Novickij V, Grainys A, Kucinskaie-Kodze I, Zvirbliene A, Novickij J. Magneto-permeabilization of viable cell membrane using high pulsed magnetic field. IEEE Trans Magn 2015; 51(9).NovickijVGrainysAKucinskaie-KodzeIZvirblieneANovickijJMagneto-permeabilization of viable cell membrane using high pulsed magnetic fieldIEEE Trans Magn201551910.1109/TMAG.2015.2439638Search in Google Scholar

Novickij V, Grainys A, Svediene J, Markovskaja S, Paskevicius A, Novickij J. Microsecond pulsed magnetic field improves efficacy of antifungal agents on pathogenic microorganisms. Bioelectromagnetics 2014; 35: 347-53.NovickijVGrainysASvedieneJMarkovskajaSPaskeviciusANovickijJMicrosecond pulsed magnetic field improves efficacy of antifungal agents on pathogenic microorganismsBioelectromagnetics2014353475310.1002/bem.21848Search in Google Scholar

Kardos TJ, Rabussay DP. Contactless magneto-permeabilization for intracellular plasmid DNA delivery in vivo. Human Vaccin Immunother 2012; 8: 1707-13.KardosTJRabussayDPContactless magneto-permeabilization for intracellular plasmid DNA delivery in vivoHuman Vaccin Immunother2012817071310.4161/hv.21576Search in Google Scholar

Novickij V, Grainys A, Novickij J, Markovskaja S. Irreversible magnetoporation of micro-organisms in high pulsed magnetic fields. IET Nanobiotechnol 2014; 8: 157-62.NovickijVGrainysANovickijJMarkovskajaSIrreversible magnetoporation of micro-organisms in high pulsed magnetic fieldsIET Nanobiotechnol201481576210.1049/iet-nbt.2013.0005Search in Google Scholar

Milacic R, Cemazar M, Sersa G. Determination of platinum in tumour tissues after cisplatin therapy by electrothermal atomic absorption spectrometry. J Pharm Biomed Anal 1997; 16: 343-8.MilacicRCemazarMSersaGDetermination of platinum in tumour tissues after cisplatin therapy by electrothermal atomic absorption spectrometryJ Pharm Biomed Anal199716343810.1016/S0731-7085(97)00045-9Search in Google Scholar

Campana LG, Testori A, Mozzillo N, Rossi CR. Treatment of metastatic melanoma with electrochemotherapy. J Surg Oncol 2014; 109: 301-7.CampanaLGTestoriAMozzilloNRossiCRTreatment of metastatic melanoma with electrochemotherapyJ Surg Oncol2014109301710.1002/jso.2351224678530Search in Google Scholar

Savoia P, Fava P, Nardo T, Osella-Abate S, Quaglino P, Bernengo MG. Skin metastases of malignant melanoma: a clinical and prognostic survey. Melanoma Res 2009; 19: 321-6.SavoiaPFavaPNardoTOsella-AbateSQuaglinoPBernengoMGSkin metastases of malignant melanoma: a clinical and prognostic surveyMelanoma Res200919321610.1097/CMR.0b013e32832ac77519641475Search in Google Scholar

Sersa G, Stabuc B, Cemazar M, Miklavcic D, Rudolf Z. Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin Cancer Res 2000; 6: 863-7.SersaGStabucBCemazarMMiklavcicDRudolfZElectrochemotherapy with cisplatin: clinical experience in malignant melanoma patientsClin Cancer Res200068637Search in Google Scholar

Spratt DE, Spratt EAG, Wu SH, DeRosa A, Lee NY, Lacouture ME, et al. Efficacy of skin-directed therapy for cutaneous metastases from advanced cancer: a meta-analysis. J Clin Oncol 2014; 32: 3144-55.SprattDESprattEAGWuSHDeRosaALeeNYLacoutureMEEfficacy of skin-directed therapy for cutaneous metastases from advanced cancer: a meta-analysisJ Clin Oncol20143231445510.1200/JCO.2014.55.4634Search in Google Scholar

Kotnik T, Pucihar G, Rebersek M, Miklavcic D, Mir LM. Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta 2003; 1614: 193-200.KotnikTPuciharGRebersekMMiklavcicDMirLMRole of pulse shape in cell membrane electropermeabilizationBiochim Biophys Acta2003161419320010.1016/S0005-2736(03)00173-1Search in Google Scholar

Jalinous R. Technical and Practical Aspects of Magnetic Nerve-Stimulation. J Clin Neurophysiol 1991; 8: 10-25.JalinousRTechnical and Practical Aspects of Magnetic Nerve-StimulationJ Clin Neurophysiol19918102510.1097/00004691-199101000-00004Search in Google Scholar

Ravazzani P, Ruohonen J, Grandori F, Tognola G. Magnetic stimulation of the nervous system: Induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng 1996; 24: 606-16.RavazzaniPRuohonenJGrandoriFTognolaGMagnetic stimulation of the nervous system: Induced electric field in unbounded, semi-infinite, spherical, and cylindrical mediaAnn Biomed Eng1996246061610.1007/BF02684229Search in Google Scholar

Arena CB, Sano MB, Rylander MN, Davalos RV. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans Biomed Eng 2011; 58: 1474-82.ArenaCBSanoMBRylanderMNDavalosRVTheoretical considerations of tissue electroporation with high-frequency bipolar pulsesIEEE Trans Biomed Eng20115814748210.1109/TBME.2010.2102021Search in Google Scholar

Chen C, Evans JA, Robinson MP, Smye SW, O’Toole P. Measurement of the efficiency of cell membrane electroporation using pulsed ac fields. Phys Med Biol 2008; 53: 4747-57.ChenCEvansJARobinsonMPSmyeSWO’ToolePMeasurement of the efficiency of cell membrane electroporation using pulsed ac fieldsPhys Med Biol20085347475710.1088/0031-9155/53/17/019Search in Google Scholar

Daskalov I, Mudrov N, Peycheva E. Exploring new instrumentation parameters for electrochemotherapy - attacking tumors with bursts of biphasic pulses instead of single pulses. IEEE Eng Med Biol Mag 1999; 18: 62-6.DaskalovIMudrovNPeychevaEExploring new instrumentation parameters for electrochemotherapy - attacking tumors with bursts of biphasic pulses instead of single pulsesIEEE Eng Med Biol Mag19991862610.1109/51.740982Search in Google Scholar

Kotnik T, Miklavcic D, Mir LM. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses - part II. Reduced electrolytic contamination. Bioelectrochemistry 2001; 54: 91-5.KotnikTMiklavcicDMirLMCell membrane electropermeabilization by symmetrical bipolar rectangular pulses - part II. Reduced electrolytic contaminationBioelectrochemistry20015491510.1016/S1567-5394(01)00115-3Search in Google Scholar

Kotnik T, Mir LM, Flisar K, Puc M, Miklavcic D. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses - part I. Increased efficiency of permeabilization. Bioelectrochemistry 2001; 54: 83-90.KotnikTMirLMFlisarKPucMMiklavcicDCell membrane electropermeabilization by symmetrical bipolar rectangular pulses - part I. Increased efficiency of permeabilizationBioelectrochemistry200154839010.1016/S1567-5394(01)00114-1Search in Google Scholar

Kuriyama S, Tsujinoue H, Toyokawa Y, Mitoro A, Nakatani T, Yoshiji H, et al. A potential approach for electrochemotherapy against colorectal carcinoma using a clinically available alternating current system with bipolar snare in a mouse model. Scand J Gastroenterol 2001; 36: 297-302.KuriyamaSTsujinoueHToyokawaYMitoroANakataniTYoshijiHA potential approach for electrochemotherapy against colorectal carcinoma using a clinically available alternating current system with bipolar snare in a mouse modelScand J Gastroenterol20013629730210.1080/00365520175007463611305518Search in Google Scholar

Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 1999; 6: 508-14.MathiesenIElectropermeabilization of skeletal muscle enhances gene transfer in vivoGene Ther199965081410.1038/sj.gt.330084710476210Search in Google Scholar

Rizzuto G, Cappelletti M, Maione D, Savino R, Lazzaro D, Costa P, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci U S A 1999; 96: 6417-22.RizzutoGCappellettiMMaioneDSavinoRLazzaroDCostaPEfficient and regulated erythropoietin production by naked DNA injection and muscle electroporationProc Natl Acad Sci U S A19999664172210.1073/pnas.96.11.64172689610339602Search in Google Scholar

Todorovic V, Kamensek U, Sersa G, Cemazar M. Changing electrode orientation, but not pulse polarity, increases the efficacy of gene electrotransfer to tumors in vivo. Bioelectrochemistry 2014; 100: 119-27.TodorovicVKamensekUSersaGCemazarMChanging electrode orientation but not pulse polarity increases the efficacy of gene electrotransfer to tumors in vivoBioelectrochemistry20141001192710.1016/j.bioelechem.2013.12.00224411306Search in Google Scholar

Miklavcic D, Mir LM, Vernier PT. Electroporation-based technologies and treatments. J Membr Biol 2010; 236: 1-2.MiklavcicDMirLMVernierPTElectroporation-based technologies and treatmentsJ Membr Biol20102361210.1007/s00232-010-9287-920658230Search in Google Scholar

Lanza A, Baldi A, Spugnini EP. Surgery and electrochemotherapy for the treatment of cutaneous squamous cell carcinoma in a yellow-bellied slider (Trachemys scripta scripta). J Am Vet Med Assoc 2015; 246: 455-7.LanzaABaldiASpugniniEPSurgery and electrochemotherapy for the treatment of cutaneous squamous cell carcinoma in a yellow-bellied slider (Trachemys scripta scripta)J Am Vet Med Assoc2015246455710.2460/javma.246.4.45525632821Search in Google Scholar

Spugnini EP, Citro G, Baldi A. Adjuvant electrochemotherapy in veterinary patients: a model for the planning of future therapies in humans. J Exp Clin Cancer Res 2009; 28:114.SpugniniEPCitroGBaldiAAdjuvant electrochemotherapy in veterinary patients: a model for the planning of future therapies in humansJ Exp Clin Cancer Res20092811410.1186/1756-9966-28-114273984619682373Search in Google Scholar

Cemazar M, Golzio M, Escoffre JM, Couderc B, Sersa G, Teisse J. In vivo imaging of tumor growth after electrochemotherapy with cisplatin. Biochem Biophys Res Commun 2006; 348: 997-1002.CemazarMGolzioMEscoffreJMCoudercBSersaGTeisseJIn vivo imaging of tumor growth after electrochemotherapy with cisplatinBiochem Biophys Res Commun2006348997100210.1016/j.bbrc.2006.07.13216899227Search in Google Scholar

Cemazar M, Miklavcic D, Scancar J, Dolzan V, Golouh R, Sersa G. Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. Br J Cancer 1999; 79: 1386-91.CemazarMMiklavcicDScancarJDolzanVGolouhRSersaGIncreased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatinBr J Cancer19997913869110.1038/sj.bjc.6690222237426410188880Search in Google Scholar

Kranjc S, Cemazar M, Grosel A, Scancar J, Sersa G. Electroporation of LPB sarcoma cells in vitro and tumors in vivo increases the radiosensitizing effect of cisplatin. Anticancer Res 2003; 23: 275-81.KranjcSCemazarMGroselAScancarJSersaGElectroporation of LPB sarcoma cells in vitro and tumors in vivo increases the radiosensitizing effect of cisplatinAnticancer Res20032327581Search in Google Scholar

Sersa G, Cemazar M, Miklavcic D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 1995; 55: 3450-5.SersaGCemazarMMiklavcicDAntitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in miceCancer Res19955534505Search in Google Scholar

Kranjc S, Cemazar M, Grosel A, Pipan Z, Sersa G. Effect of electroporation on radiosensitization with cisplatin in two cell lines with different chemo- and radiosensitivity. Radiol Oncol 2003; 37: 101-7.KranjcSCemazarMGroselAPipanZSersaGEffect of electroporation on radiosensitization with cisplatin in two cell lines with different chemo- and radiosensitivityRadiol Oncol2003371017Search in Google Scholar

Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B. Cell membrane electroporation – Part 2: the applications. IEEE Electr Insul M 2013; 29: 29-37.HaberlSMiklavcicDSersaGFreyWRubinskyBCell membrane electroporation – Part 2: the applicationsIEEE Electr Insul M201329293710.1109/MEI.2013.6410537Search in Google Scholar

Novickij V, Grainys A, Novickij J, Lucinskis A, Zapolskis P. Compact microsecond pulsed magnetic field generator for application in bioelectronics. Elektronika IR Elektrotechnika 2013; 19: 25-8.NovickijVGrainysANovickijJLucinskisAZapolskisPCompact microsecond pulsed magnetic field generator for application in bioelectronicsElektronika IR Elektrotechnika20131925810.5755/j01.eee.19.8.3266Search in Google Scholar

Morgado-Valle C, Verdugo-Diaz L, Garcia DE, Morales-Orozco C, Drucker-Colin R. The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 1998; 291: 217-30.Morgado-ValleCVerdugo-DiazLGarciaDEMorales-OrozcoCDrucker-ColinRThe role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulationCell Tissue Res19982912173010.1007/s0044100509929426309Search in Google Scholar

Rotem A, Moses E. Magnetic stimulation of one-dimensional neuronal cultures. Biophys J 2008; 94: 5065-78.RotemAMosesEMagnetic stimulation of one-dimensional neuronal culturesBiophys J20089450657810.1529/biophysj.107.125708239734218326634Search in Google Scholar

Cemazar M, Golzio M, Sersa G, Escoffre JM, Coer A, Vidic S, et al. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Hum Gene Ther 2012; 23: 128-37.CemazarMGolzioMSersaGEscoffreJMCoerAVidicSHyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumorsHum Gene Ther2012231283710.1089/hum.2011.073326044121797718Search in Google Scholar

Mesojednik S, Pavlin D, Sersa G, Coer A, Kranjc S, Grosel A, et al. The effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Ther 2007; 14: 1261-9.MesojednikSPavlinDSersaGCoerAKranjcSGroselAThe effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in miceGene Ther2007141261910.1038/sj.gt.330298917597791Search in Google Scholar

Abada P, Howell SB. Regulation of cisplatin cytotoxicity by Cu influx transporters. Met Based Drugs 2010; 2010: 317581.AbadaPHowellSBRegulation of cisplatin cytotoxicity by Cu influx transportersMet Based Drugs2010201031758110.1155/2010/317581302536221274436Search in Google Scholar

Arnesano F, Losacco M, Natile G. An updated view of cisplatin transport. Eur J Inorg Chem 2013: 2701-11.ArnesanoFLosaccoMNatileGAn updated view of cisplatin transportEur J Inorg Chem201327011110.1002/ejic.201300001Search in Google Scholar

Antov Y, Barbul A, Korenstein R. Electroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp Cell Res 2004; 297: 348-62.AntovYBarbulAKorensteinRElectroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fieldsExp Cell Res20042973486210.1016/j.yexcr.2004.03.02715212939Search in Google Scholar

Antov Y, Barbul A, Mantsur H, Korenstein R. Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 2005; 88: 2206-23.AntovYBarbulAMantsurHKorensteinRElectroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromoleculesBiophys J20058822062310.1529/biophysj.104.051268130527115556977Search in Google Scholar

Deng Z, De Lisanby SH, Peterchev AV. Electric field depth-focality trade off in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul 2013; 6: 1-13.DengZDe LisanbySHPeterchevAVElectric field depth-focality trade off in transcranial magnetic stimulation: Simulation comparison of 50 coil designsBrain Stimul2013611310.1016/j.brs.2012.02.005356825722483681Search in Google Scholar

eISSN:
1581-3207
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology