Acceso abierto

Finiteness of the criss-cross algorithm for the linear programming problem with s-monotone index selection rules


Cite

[1] A. A. Akkeleş, L. Balogh, and T. Illés. A véges criss-cross módszer új variánsai biszimmetrikus lineáris komplementaritási feladatra. Alkalmazott Matematikai Lapok, 21:1–25, 2003. Search in Google Scholar

[2] A. A. Akkeleş, L. Balogh, and T. Illés. New variants of the criss-cross method for linearly constrained convex quadratic programming. European Journal of Operational Research, 157(1):74–86, 2004.10.1016/j.ejor.2003.08.008 Search in Google Scholar

[3] K. M. Anstreicher and T. Terlaky. A monotonic build-up simplex algorithm for linear programming. Operations Research, 42(3):556–561, 1994.10.1287/opre.42.3.556 Search in Google Scholar

[4] L. Balogh, F. Bilen, and T. Illés. A simple proof of the generalized farkas lemma for oriented matroids. Pure Mathematics and Applications, 13:423–431, 01 2002. Search in Google Scholar

[5] F. Bilen, Zs. Csizmadia, and T. Illés. Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems. Optimization Methods and Software, 22(4):679–695, 2007.10.1080/10556780701223541 Search in Google Scholar

[6] R. G. Bland. New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2:103–107, 1977.10.1287/moor.2.2.103 Search in Google Scholar

[7] V. Chvátal. Linear programming. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York, 1983. Search in Google Scholar

[8] A. Csizmadia, Zs. Csizmadia, and T. Illés. Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied. Central European Journal of Operations Research, 26, 2018.10.1007/s10100-018-0523-1 Search in Google Scholar

[9] Zs. Csizmadia. New pivot based methods in linear optimization, and an application in petroleum industry. PhD thesis, Eötvös Loránd University of Sciences, 2007. Available at www.cs.elte.hu/~csisza. Search in Google Scholar

[10] Zs. Csizmadia, T. Illés, and A. Nagy. The s-monotone index selection rules for pivot algorithms of linear programming. European Journal of Operation Research, 221(3):491–500, 2012.10.1016/j.ejor.2012.02.008 Search in Google Scholar

[11] G. B. Dantzig. Programming in a linear structure. Comptroller, USAF, Washington D.C., 1948. Search in Google Scholar

[12] G. B. Dantzig. Linear programming and extensions. Princeton University Press, Princeton, N.J., 1963.10.7249/R366 Search in Google Scholar

[13] K. Fukuda and T. Terlaky. Criss-cross methods: a fresh view on pivot algorithms. Mathematical Programming, 79(1-3, Ser. B):369–395, 1997. Lectures on mathematical programming (ismp97) (Lausanne, 1997). Search in Google Scholar

[14] K. Fukuda and T. Terlaky. On the existence of a short admissible pivot sequence for feasibility and linear optimization problems. Pure Mathematics and Applications, 10(4):431–447, 1999. Search in Google Scholar

[15] T. Illés. Lineáris optimalizálás elmélete és pivot algoritmusai. Technical report, Operációkutatási Tanszék, Eötvös Loránd Tudományegyetem, 2013. Operations Research Report, 2013-03. Search in Google Scholar

[16] T. Illés and K. Mészáros. A new and constructive proof of two basic results of linear programming. Yugoslav Journal of Operations Research, 11(1):15–30, 2001. Search in Google Scholar

[17] T. Illés and A. Nagy. Computational aspects of simplex and mbu-simplex algorithms using different anti-cycling pivot rules. Optimization, 63(1):49–66, 2014.10.1080/02331934.2013.811666 Search in Google Scholar

[18] T. Illés, Á. Szirmai, and T. Terlaky. The finite criss-cross method for hyperbolic programming. European Journal of Operational Research, 114(1):198–214, 1999.10.1016/S0377-2217(98)00049-6 Search in Google Scholar

[19] T. Illés and T. Terlaky. Pivot versus interior point methods: pros and cons. European Journal of Operational Research, 140(2):170–190, 2002. Search in Google Scholar

[20] E. Klafszky and T. Terlaky. The role of pivoting in proving some fundamental theorems of linear algebra. Linear Algebra and its Applications, 151:97–118, 1991.10.1016/0024-3795(91)90356-2 Search in Google Scholar

[21] E. Klafszky and T. Terlaky. Some generalizations of the criss-cross method for quadratic programming. Optimization, 24(1-2):127–139, 1992.10.1080/02331939208843783 Search in Google Scholar

[22] K. G. Murty. Linear and combinatorial programming. Robert E. Krieger Publishing Co. Inc., Melbourne, FL, 1985. Search in Google Scholar

[23] A. Nagy. On the theory and applications of flexible anti-cycling index selection rules for linear optimization problems. PhD thesis, Eötvös Loránd University of Sciences, 2015. Search in Google Scholar

[24] T. Terlaky. Egy új, véges criss-cross módszer lineáris programozási feladatok megoldására. Alkalmazott Matematikai Lapok, 10(3-4):289–296, 1983. Search in Google Scholar

[25] T. Terlaky. A convergent criss-cross method. Optimization, 16(5):683–690, 1985.10.1080/02331938508843067 Search in Google Scholar

[26] T. Terlaky. A finite criss-cross method for oriented matroids. Journal of Combinatorial Theory B, 42(3):319–327, 1987.10.1016/0095-8956(87)90049-9 Search in Google Scholar

[27] T. Terlaky and S. Zhang. Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46/47(1-4):203–233, 1993. Degeneracy in optimization problems. Search in Google Scholar

[28] S. Zhang. A new variant of criss-cross pivot algorithm for linear programming. European Journal of Operational Research, 116(3):607–614, 1997.10.1016/S0377-2217(98)00026-5 Search in Google Scholar

[29] S. Zionts. The criss-cross method for solving linear programming problems. Management Science, 15(7):426–445, 1969.10.1287/mnsc.15.7.426 Search in Google Scholar