Acceso abierto

Strength Analysis of a Large-Size Supporting Structure for an Offshore Wind Turbine

   | 23 may 2017

Cite

1. European Commission, A policy framework for climate and energy in the period from 2020 up to 2030, impact assessment, COM(2014) 15 final, SWD(2014) 15 final, Eur- Lex. 2014Search in Google Scholar

2. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on Launching the public consultation process on a new energy market design, Eur- Lex. 2015Search in Google Scholar

3. Wind in power, 2015 European statistics, European Wind Energy Association, February 2016Search in Google Scholar

4. The European offshore wind industry - key trends and statistics 2015, A report by the European Wind Energy Association, February 2016Search in Google Scholar

5. Annual statistics, WindEurope, 2016Search in Google Scholar

6. Wind Energy Scenarios for 2030, A report by the European Wind Energy Association - August 2015Search in Google Scholar

7. Laszlo Arany, S. Bhattacharya, John Macdonald, S.J. Hogan, Design of monopiles for offshore wind turbines in 10 steps, Soil Dynamics and Earthquake Engineering, Volume 92, January 2017, pp. 126-152, ISSN 0267-7261, http://dx.doi.org/10.1016/j.soildyn.2016.09.024.10.1016/j.soildyn.2016.09.024Search in Google Scholar

8. Swagata Bisoi, Sumanta Haldar, Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction, Soil Dynamics and Earthquake Engineering, Volume 73, June 2015, pp. 103-117, ISSN 0267-7261, http://dx.doi.org/10.1016/j.soildyn.2015.02.017.10.1016/j.soildyn.2015.02.017Search in Google Scholar

9. A.T. Myers, S.R. Arwade, V. Valamanesh, S. Hallowell, W. Carswell, Strength, stiffness, resonance and the design of offshore wind turbine monopiles, Engineering Structures, Volume 100, 1 October 2015, pp. 332-341, ISSN 0141-0296, http://dx.doi.org/10.1016/j.engstruct.2015.06.021.10.1016/j.engstruct.2015.06.021Search in Google Scholar

10. Hezhen Yang, Yun Zhu, Qijin Lu, Jun Zhang, Dynamic reliability based design optimization of the tripod substructure of offshore wind turbines, Renewable Energy, Volume 78, June 2015, pp. 16-25, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2014.12.061.10.1016/j.renene.2014.12.061Search in Google Scholar

11. B. Yeter, Y. Garbatov, C. Guedes Soares, Fatigue damage assessment of fixed offshore wind turbine tripod support structures, Engineering Structures, Volume 101, 15 ctober 2015, pp. 518-528, ISSN 0141-0296, http://dx.doi.org/10.1016/j.engstruct.2015.07.038.10.1016/j.engstruct.2015.07.038Search in Google Scholar

12. K.H. Chew, E.Y.K. Ng, K. Tai, M. Muskulus, D. Zwick, Offshore Wind Turbine Jacket Substructure: A Comparison Study between Four-Legged and Three-Legged Designs, J Ocean Wind Energy, 1 (2) (2014), pp. 74-81Search in Google Scholar

13. Sebastian Kelma, Peter Schaumann, Probabilistic Fatigue Analysis of Jacket Support Structures for Offshore Wind Turbines Exemplified on Tubular Joints, Energy Procedia, Volume 80, 2015, pp. 151-158, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2015.11.417.10.1016/j.egypro.2015.11.417Search in Google Scholar

14. M.D. Esteban, B. Counago, J.S. Lopez-Gutierrez, V. Negro, F. Vellisco, Gravity based support structures for offshore wind turbine generators: Review of the installation process, Ocean Engineering, Volume 110, Part A, 1 December 2015, pp. 281-291, ISSN 0029-8018, http://dx.doi.org/10.1016/j.oeaneng.2015.10.033.Search in Google Scholar

15. W.Z. Lim, R.Y. Xiao, Fluid-structure interaction analysis of gravity-based structure (GBS) offshore platform with partitioned coupling method, Ocean Engineering, Volume 114, 1 March 2016, pp. 1-9, ISSN 0029-8018, http://dx.doi.org/10.1016/j.oceaneng.2015.12.059.10.1016/j.oceaneng.2015.12.059Search in Google Scholar

16. Marc Costa Ros, Offshore wind industry review of Gravity Base Foundations (GBSs), Identifying the key barriers to large scale commercialisation of gravity based structures (gbss) in the offshore wind industry, report, The Carbon Trust, October 2015Search in Google Scholar

17. Simon Lefebvre, Maurizio Collu, Preliminary design of a floating support structure for a 5 MW offshore wind turbine, Ocean Engineering, Volume 40, February 2012, pp. 15-26, ISSN 0029-8018, http://dx.doi.org/10.1016/j.oceaneng.2011.12.009.10.1016/j.oceaneng.2011.12.009Search in Google Scholar

18. Michael Borg, Maurizio Collu, A Comparison on the Dynamics of a Floating Vertical Axis Wind Turbine on Three Different Floating Support Structures, Energy Procedia, Volume 53, 2014, pp. 268-279, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2014.07.236.10.1016/j.egypro.2014.07.236Search in Google Scholar

19. Matthew Hall, Brad Buckham, Curran Crawford, Hydrodynamics-based floating wind turbine support platform optimization: A basis function approach, Renewable Energy, Volume 66, June 2014, pp. 559-569, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2013.12.035.10.1016/j.renene.2013.12.035Search in Google Scholar

20. M. Collu and M. Borg, 11 - Design of floating offshore wind turbines, In Offshore Wind Farms, Woodhead Publishing, 2016, pp. 359-385, ISBN 9780081007792, http://dx.doi.org/10.1016/B978-0-08-100779-2.00011-8.10.1016/B978-0-08-100779-2.00011-8Search in Google Scholar

21. Yichao Liu, Sunwei Li, Qian Yi, Daoyi Chen, Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 60, July 2016, pp. 433-449, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2016.01.109.10.1016/j.rser.2016.01.109Search in Google Scholar

22. Frank Adam, Thomas Myland, Burkhard Schuldt, Jochen Grosmann, Frank Dahlhaus, Evaluation of internal force superposition on a TLP for wind turbines, Renewable Energy, Volume 71, November 2014, pp. 271-275, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2014.05.019.10.1016/j.renene.2014.05.019Search in Google Scholar

23. Ali Nematbakhsh, Erin E. Bachynski, Zhen Gao, Torgeir Moan, Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches, Applied Ocean Research, Volume 53, October 2015, pp. 142-154, ISSN 0141-1187, http://dx.doi.org/10.1016/j.apor.2015.08.004.10.1016/j.apor.2015.08.004Search in Google Scholar

24. Ali M. Abdelsalam, K. Boopathi, S. Gomathinayagam, S.S. Hari Krishnan Kumar, Velraj Ramalingam, Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine, Journal of Wind Engineering and Industrial Aerodynamics, Volume 128, May 2014, pp. 54-65, ISSN 0167-6105, http://dx.doi.org/10.1016/j.jweia.2014.03.002.10.1016/j.jweia.2014.03.002Search in Google Scholar

25. J.T. Cieslinski, R. Mosdorf, Gas bubble dynamics- experiment and fractal analysis, International Journal of Heat and Mass Transfer, Volume 48, Issue 9, April 2005, pp. 1808-1818, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.002.10.1016/j.ijheatmasstransfer.2004.12.002Search in Google Scholar

26. Chi-Jeng Bai, Wei-Cheng Wang, Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs), Renewable and Sustainable Energy Reviews, Volume 63, September 2016, pp. 506-519, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2016.05.078.10.1016/j.rser.2016.05.078Search in Google Scholar

27. Krzysztof J. Kalinski, Marek A. Galewski, Chatter vibration surveillance by the optimal-linear spindle speed control, Mechanical Systems and Signal Processing, Volume 25, Issue 1, January 2011, pp. 383-399, ISSN 0888-3270, http://dx.doi.org/10.1016/j.ymssp.2010.09.005.10.1016/j.ymssp.2010.09.005Search in Google Scholar

28. Dariusz Mikielewicz, Jarosław Mikielewicz, Joanna Tesmar, ImprSearch in Google Scholar

29. oved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes, International Journal of Heat and Mass Transfer, Volume 50, Issues 19-20, September 2007, pp. 3949-3956, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.024.10.1016/j.ijheatmasstransfer.2007.01.024Search in Google Scholar

30. Sebastian Schafhirt, Ana Page, Gudmund Reidar Eiksund, Michael Muskulus, Influence of Soil Parameters on the Fatigue Lifetime of Offshore Wind Turbines with Monopile Support Structure, Energy Procedia, Volume 94, September 2016, pp. 347-356, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2016.09.194.10.1016/j.egypro.2016.09.194Search in Google Scholar

31. K Skalski, A Morawski, W Przybylski, Analysis of contact elastic-plastic strains during the process of burnishing, International Journal of Mechanical Sciences, Volume 37, Issue 5, 1995, pp. 461-472, ISSN 0020-7403, http://dx.doi.org/10.1016/0020-7403(94)00083-V.10.1016/0020-7403(94)00083-VSearch in Google Scholar

32. T.A. Stolarski, Wear of water-lubricated composite materials, Wear, Volume 58, Issue 1, 1980, pp. 103-108, ISSN 0043-1648, http://dx.doi.org/10.1016/0043-1648(80)90215-X.10.1016/0043-1648(80)90215-XSearch in Google Scholar

33. Zhiyu Jiang, Limin Yang, Zhen Gao, Torgeir Moan, Numerical Simulation of a Wind Turbine with a Hydraulic Transmission System, Energy Procedia, Volume 53, 2014, pp. 44-55, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2014.07.214.10.1016/j.egypro.2014.07.214Search in Google Scholar

34. Niklas, Karol. “Calculations of notch stress factor of a thinwalled spreader bracket fillet weld with the use of a local stress approach.” Engineering Failure Analysis 45 (2014), pp. 326-338.Search in Google Scholar

35. J.A. Sainz, New Wind Turbine Manufacturing Techniques, Procedia Engineering, Volume 132, 2015, pp. 880-886, ISSN 1877-7058, http://dx.doi.org/10.1016/j.proeng.2015.12.573.10.1016/j.proeng.2015.12.573Search in Google Scholar

36. C. Dymarski, P. Dymarski, Developing methodology for model tests of floating platforms in low-depth towing tank, Archives of Civil and Mechanical Engineering, Volume 16, Issue 1, January 2016, pp. 159-167, ISSN 1644-9665, http://dx.doi.org/10.1016/j.acme.2015.07.003.10.1016/j.acme.2015.07.003Search in Google Scholar

37. Łuczak M., Manzato S., Peeters B., Branner K., Berring P., Kahsin M.: Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results, Shock and Vibration. -Vol. 2014, iss. 1 (2014), pp.71-82Search in Google Scholar

38. A. Cichański, “The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension” in Proceedings of 22nd International Conference on Engineering Mechanics 2016, edited by Igor Zolotarev and Vojtech Radolf, Engineering Mechanics 2016, pp. 110-113 (Svratka, Czech Republic, 2016) Search in Google Scholar

39. Deja, M. & Siemiatkowski, M.S., Feature-based generation of machining process plans for optimised parts manufacture, J Intell Manuf (2013) 24: 831. doi:10.1007/s10845-012-0633-xSearch in Google Scholar

40. Jiahai Yuan, Chunning Na, Yan Xu, Changhong Zhao, Wind turbine manufacturing in China: A review, Renewable and Sustainable Energy Reviews, Volume 51, November 2015, pp. 1235-1244, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2015.07.048.10.1016/j.rser.2015.07.048Search in Google Scholar

41. A. Zieliński, H. Smoleńska, W. Serbiński, W. Kończewicz, A. Klimpel, Characterization of the Co-base layers obtained by laser cladding technique, Journal of Materials Processing Technology, Volumes 164-165, 15 May 2005, pp. 958-963, ISSN 0924-0136, http://dx.doi.org/10.1016/j.jmatprotec.2005.02.093.10.1016/j.jmatprotec.2005.02.093Search in Google Scholar

42. Magdalena Mieloszyk, Wiesław Ostachowicz, An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model, Marine Structures, Volume 51, January 2017, pp. 65-86, ISSN 0951-8339, http://dx.doi.org/10.1016/j.marstruc.2016.10.006.10.1016/j.marstruc.2016.10.006Search in Google Scholar

43. D.J.M. Fallais, S. Voormeeren, E. Lourens, Vibrationbased Identification of Hydrodynamic Loads and System Parameters for Offshore Wind Turbine Support Structures, Energy Procedia, Volume 94, September 2016, pp. 191-198, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2016.09.222.10.1016/j.egypro.2016.09.222Search in Google Scholar

44. M. Siemiatkowski, W. Przybylski, Simulation studies of process flow with in-line part inspection in machining cells, Journal of Materials Processing Technology, Volume 171, Issue 1, 10 January 2006, pp. 27-34, ISSN 0924-0136, http://dx.doi.org/10.1016/j.jmatprotec.2005.06.051.10.1016/j.jmatprotec.2005.06.051Search in Google Scholar

45. Binita Shrestha, Martin Kuhn, Adaptation of Controller Concepts for Support Structure Load Mitigation of Offshore Wind Turbines, Energy Procedia, Volume 94, September 2016, pp. 241-248, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2016.09.231.10.1016/j.egypro.2016.09.231Search in Google Scholar

46. Wojciech Litwin, Influence of local bush wear on water lubricated sliding bearing load carrying capacity, Tribology International, Volume 103, November 2016, pp. 352-358, ISSN 0301-679X, http://dx.doi.org/10.1016/j.triboint.2016.06.044.10.1016/j.triboint.2016.06.044Search in Google Scholar

47. Standard DNVGL-ST-0126, Support structures for wind turbines, DNV GL AS, April 2016Search in Google Scholar

48. VON DER HAAR, C and MARX, S. Design aspects of concrete towers for wind turbines. J. S. Afr. Inst. Civ. Eng. 2015, vol.57, n.4, pp. 30-37. ISSN 2309-8775. http://dx.doi.org/10.17159/2309-8775/2015/v57n4a4.10.17159/2309-8775/2015/v57n4a4Search in Google Scholar

49. DNV-OS-B101, OFFSHORE STANDARD, METALLIC MATERIALS, Det Norske Veritas 2009Search in Google Scholar

50. EN 10025-2 - Non-alloy structural steels, European Committee for Standardization, 2005 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences