Acceso abierto

MSIS Image Postioning in Port Areas with the Aid of Comparative Navigation Methods


Cite

1. Wawrzyniak N., Zaniewicz G., Detecting small moving underwater objects using scanning sonar in waterside surveillance and complex security solutions. Proceedings of the 17th International Radar Symposium (IRS),Krakow, Poland,(2016)10.1109/IRS.2016.7497285Search in Google Scholar

2. Ribas D., Ridao P., Neira J.et al. Line extraction from mechanically scanned imaging sonar, 3rd Iberian Conference on Pattern Recognition and Image Analysis. Book Series: Lecture Notes in Computer Science, vol.4477, pp. 322-329, (2007).Search in Google Scholar

3. Kazimierski, W., Zaniewicz, G., Analysis of the Possibility of Using Radar Tracking Method Based on GRNN for Processing Sonar Spatial Data, Proceedings of the Joint Rough Set Symposium, Spain, Kryszkiewicz et al. (Eds), Lecture Notes in Artificial Intelligence, 8537, pp. 319-326. Granada and Madrid, (2014).10.1007/978-3-319-08729-0_32Search in Google Scholar

4. Zhang, J., Han, Y., Zheng, C. et al., Underwater target localization using long baseline positioning system. Applied Acoustics, vol. 111, pp. 129-134, (2016).10.1016/j.apacoust.2016.04.009Search in Google Scholar

5. Reis, J., Morgado, M., Batista, P. et al., Design and Experimental Validation of a USBL Underwater Acoustic Positioning System. Sensors, vol. 16, issue 9, article number 1491, (2016).10.3390/s16091491503876427649181Search in Google Scholar

6. Naus, K., Nowak, A., The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements. Sensors, vol. 16, issue 8, article number 1279, (2016).10.3390/s16081279501744427537884Search in Google Scholar

7. Bell, J. M., Linnett L. M., Simulation and Analysis of Synthetic Sidescan Sonar Images. IEEE Proceedings - Radar, Sonar and Navigation, 144(4), (1997).10.1049/ip-rsn:19971311Search in Google Scholar

8. Palczynski, M., Method for generating synthetic sonar images for the purpose of comparative navigation, (Ph. D. thesis), Szczecin University of Technology, (2008).Search in Google Scholar

9. Stateczny, A., The neural method of sea bottom shape modelling for the spatial maritime information system. Book Editor(s): Brebbia, CA., Olivella, J. Maritime Engineering and Ports II. Book Series: Water Studies Series vol. 9, pp. 251-259, Barcelona (2000).Search in Google Scholar

10. Lubczonek, J., Stateczny, A., Concept of neural model of the sea bottom surface. Book Editor(s): Rutkowski, L., Kacprzyk, J. Neural Networks and Soft Computing, Book Series: Advances in Soft Computing, pp. 861-866, Zakopane (2003).Search in Google Scholar

11. Lubczonek, J., Hybrid neural model of the sea bottom surface, Edited by: Rutkowski, L., Siekmann, J., Tadeusiewicz, R. et al., 7th International Conference on Artificial Intelligence and Soft Computing, Lecture Notes in Artificial Intelligence, vol. 3070, pp. 1154-1160, Zakopane, Poland (2004).Search in Google Scholar

12. Maleika, W., Moving Average Optimization in Digital Terrain Model Generation Based on Test Multibeam Echosounder Data, Geo-Marine Letters, 35, 61-68, (2015).10.1007/s00367-014-0389-8Search in Google Scholar

13. Maleika, W., The Influence of the Grid Resolution on the Accuracy of the Digital Terrain Model Used in Seabed Modelling. Marine Geophysical Research, 36, 35-44, (2015).10.1007/s11001-014-9236-6Search in Google Scholar

14. Maleika, W, Palczynski, M., Frejlichowski, D., Effect of Density of Measurement Points Collected from a Multibeam Echosounder on the Accuracy of a Digital Terrain Model, 4th International Scientific Asian Conference on Intelligent Information and Database Systems (ACIIDS), Edited by: Pan, JS., Chen, SM., Nguyen, NT., Book Series: Lecture Notes in Artificial Intelligence, vol. 7198, pp. 456-465, Kaohsiung, Taiwan, (2012).Search in Google Scholar

15. Maleika, W., The influence of track configuration and multibeam echosounder parameters on the accuracy of seabed DTMs obtained in shallow water, Earth Science Informatics, vol. 6, issue 2, pp. 47-69, (2013).10.1007/s12145-013-0111-9Search in Google Scholar

16. Wawrzyniak, N., Hyla, T., Managing Depth Information Uncertainty in Inland Mobile Navigation Systems. Joint Rough Set Symposium, Granada and Madrid, Spain, Kryszkiewicz et al. (Eds), Lecture Notes in Artificial Intelligence, 8537, pp. 343-350, 2014.10.1007/978-3-319-08729-0_35Search in Google Scholar

17. Ratuszniak, N., Palczynski, M., Method of visualization for scanning sonar image, Measurement Automation and Monitoring vol.56 no 12/2010.Search in Google Scholar

18. Stateczny, A., Methods of comparative plotting of the ship’s position. Book Editor(s): Brebbia, CA., Sciutto, G. Maritime Engineering & Ports III. Book Series: Water Studies Series vol. 12, pp. 61-68, Rhodes (2002)Search in Google Scholar

19. Stateczny, A., Artificial neural networks for comparative navigation. Book Editor(s): Rutkowski, L., Siekmann, J., Tadeusiewicz, R., et al. Artificial Intelligence and Soft Computing - ICAISC 2004. Book Series: Lecture Notes in Artificial Intelligence, vol. 3070, pp. 1187-1192, Zakopane (2004).Search in Google Scholar

20. Kazimierski, W., Stateczny, A., Radar and Automatic Identification System track fusion in an Electronic Chart Display and Information System. Journal of Navigation, vol. 68, pp 1141-1154, 2015.10.1017/S0373463315000405Search in Google Scholar

21. Wang, L., Yu, L., Zhu, Y., Construction Method of the Topographical Features Model for Underwater Terrain Navigation. Polish Maritime Research, vol. 22, special issue 1, pp. 121-125, (2015).10.1515/pomr-2015-0043Search in Google Scholar

22. Zhou, L., Cheng, X., Zhu, Y.,Terrain aided navigation for autonomous underwater vehicles with coarse maps. Measurement Science and Technology, vol. 27, issue 9, article number 095002, (2016).10.1088/0957-0233/27/9/095002Search in Google Scholar

23. Miller, P., A., Farrell, J., A., Zhao, Y. et al. Autonomous Underwater Vehicle Navigation, IEEE Journal of Oceanic Engineering, vol. 35, issue 3, special issue, pp. 663-678, (2010).10.1109/JOE.2010.2052691Search in Google Scholar

24. Nygren, I., Jansson, M., Terrain navigation for underwater vehicles using the correlator method. IEEE Journal of Oceanic Engineering vol. 29, issue 3, pp. 906-915, (2004).10.1109/JOE.2004.833222Search in Google Scholar

25. Zhou, L., Cheng, X., Zhu, Y. et al. Terrain Aided Navigation for Long-Range AUVs Using a New Bathymetric Contour Matching Method. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Busan, South Korea, pp. 249-254, (2015).10.1109/AIM.2015.7222540Search in Google Scholar

26. Ramesh, R., Jyothi, V., Vedachalam, N. et al. Development and Performance Validation of a Navigation System for an Underwater Vehicle. Journal of Navigation, vol. 69, issue 5, pp. 1097-1113, (2016).10.1017/S0373463315001058Search in Google Scholar

27. Hyla, T., Kazimierski, W., Wawrzyniak, N,. Analysis of Radar Integration Possibilities in Inland Mobile Navigation. Proceedings of 16th International Radar Symposium (IRS), International Radar Symposium Proceedings, H. Rohling (Ed.), pp. 864-869, Dresden, Germany (2015).10.1109/IRS.2015.7226379Search in Google Scholar

28. Hyla, T., Wawrzyniak, N., Kazimierski, W., Model of Collaborative Data Exchange for Inland Mobile Navigation, Proceedings of Soft Computing in Computer and Information Science Conference, Advances in Intelligent Systems and Computing, vol. 342, pp. 435-444, Miedzyzdroje, (2015)10.1007/978-3-319-15147-2_36Search in Google Scholar

29. Gotlib, D., A Cartographic Presentation Model for Navigation and Location-Based Applications. Joint Symposium of ISPRS Commission IV / AutoCarto Annual Conference. Book Series: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. 38, part 4, Orlando, (2010).Search in Google Scholar

30. Wlodarczyk-Sielicka, M., Stateczny, A., Selection of SOM Parameters for the Needs of Clusterisation of Data Obtained by Interferometric Methods. Proceedings of 16th International Radar Symposium (IRS), International Radar Symposium Proceedings, H. Rohling (Ed.), pp. 1129-1134, Dresden, Germany (2015).10.1109/IRS.2015.7226268Search in Google Scholar

31. Wlodarczyk-Sielicka M., Lubczonek J., Stateczny A., Comparison of Selected Clustering Algorithms of Raw Data Obtained by Interferometric Methods Using Artificial Neural Networks. Proceedings of 16th International Radar Symposium (IRS), International Radar Symposium, Krakow, Poland (2016).10.1109/IRS.2015.7226268Search in Google Scholar

32. Wlodarczyk-Sielicka M., Stateczny A., Comparison of selected reduction methods of bathymetric data obtained by multibeam echosounder. Proceedings of Baltic Geodesy Congress, Gdansk, Poland (2016).10.1109/BGC.Geomatics.2016.22Search in Google Scholar

33. Dziubich, T., Szymanski, J., Brzeski, A. et al.Depth Images Filtering in Distributed Streaming. Polish Maritime Research, vol. 23, issue: 2, pp. 91-98, (2016).Search in Google Scholar

34. Wlodarczyk-Sielicka, M., Stateczny, A., Clustering Bathymetric Data for Electronic Navigational Charts. The Journal of Navigation vol. 69, issue 5, pp 1143-1153 (2016).10.1017/S0373463316000035Search in Google Scholar

35. Hejmanowska B., Kamiński W., Przyborski M., Pyrchla J., Modern remote sensing and the challenges facing education systems in terms of its teaching, 7th International Confrence on Education and New Learning Technologies EDULEARN 15 Barcelona, Spain, Book Series: EDULEARN Proceedings, pp. 6549-6558,(2015).Search in Google Scholar

36. Kazimierski, W., Wlodarczyk-Sielicka, M., Technology of Spatial Data Geometrical Simplification in Maritime Mobile Information System for Coastal Waters. Polish Maritime Research,Vol. 23, Issue:3, pp. 3-12, (2016).Search in Google Scholar

37. Moszynski, M., Chybicki, A., Kulawiak, M. et al. A novel method for archiving multibeam sonar data with emphasis on efficient record size reduction and storage. Polish Maritime Research, vol. 20, issue 1, pp. 77-86, (2013).10.2478/pomr-2013-0009Search in Google Scholar

38. Stateczny, A., Bodus-Olkowska I., Hierarchical Hydrographic Data Fusion or Precise Port Electronic Navigational Chart Production. in Mikulsk J.(ed.) Telematics in the Transport Environment, Book Series: Communications in Computer and Information Science 471, pp. 359-368, Ustron, Poland (2014).Search in Google Scholar

39. Stateczny, A., Bodus-Olkowska, I., Sensor Data Fusion Techniques for Environment Modelling. Proceedings of 16th International Radar Symposium (IRS), International Radar Symposium Proceedings, H. Rohling (Ed.), pp. 1123-1128, Dresden, Germany (2015).10.1109/IRS.2015.7226263Search in Google Scholar

40. Pokonieczny, K., Bielecka, E., Kaminski, P., Analysis of Spatial Distribution of Geodetic Control Points and Land Cover. 14th International Multidisciplinary Scientific Geoconference (SGEM) Geoconference on Informatics, Geoinformatics and Remote Sensing, vol. II, pp. 49-56, Albena, Bulgaria, (2014).10.5593/SGEM2014/B22/S9.007Search in Google Scholar

41. Burdziakowski, P., Janowski A., Kholodkow A. et al., Maritime Laser Scanning as the Source For Spatial Data, Polish Maritime Research, vol. 22, issue 4, pp. 9-14, (2015).10.1515/pomr-2015-0064Search in Google Scholar

42. Stateczny, A., Wawrzyniak, N., Method for determining stationary position of scanning sonar, involves determining head position based on sonar search for actual sonar image with set of synthetic images generated by performing ray tracing process based on model of bottom. Patent Number: PL406523-A1. Patent Assignee: Marine Technology Sp. z o.o. (2015).Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences