1. bookVolumen 34 (2015): Edición 329 (December 2015)
    Rural Sustainability Research
Detalles de la revista
License
Formato
Revista
eISSN
2256-0939
Primera edición
30 Aug 2012
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

The Composition and Use Value of Tree Biomass Ash

Publicado en línea: 19 Jan 2016
Volumen & Edición: Volumen 34 (2015) - Edición 329 (December 2015)<br/>Rural Sustainability Research
Páginas: 32 - 37
Detalles de la revista
License
Formato
Revista
eISSN
2256-0939
Primera edición
30 Aug 2012
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

Wood-based ash landfilling is increasing issue not only in Latvia but in the whole world as more biomass is used for energy production. Utilization of wood burning waste as fertilizer is already used worldwide, but there is lack of information about chemical composition of wood ash obtained from Latvia plants, so the aim of this study was to determine chemical composition and analyse possible utilization options of wood-based ash from Latvia plants. Therefore wood ash samples from 53 companies were collected, sieved and chemical composition of samples was determined. It was concluded that within higher capacity of furnace more coarse fraction of wood ash was observed which is less valuable as fertilizer. Wood ash is good liming material consisting alkali compounds and other biogenic elements but also heavy metals, which are pollutants and could cause environmental problems.

Keywords

1. Būmanis, K., Krasavcevs, I., Liše, S., & Stepiņa, A. (2012). Monitoring of wood biomass consumption for energy production. Research. Jelgava: MEKA, 78 pp.Search in Google Scholar

2. Eijk, R. J., Obernberger, I., & Supancic, K. (2012). Options for increased utilization of ash from biomass combustion and co-firing. Report, KEMA Nederland B.V., Arnhem, the Netherlands, 39 pp.Search in Google Scholar

3. Emilsson, S. (2006). From Extraction of Forest Fuels to Ash Recycling. International handbook. Swedish Forest Agency, 42 pp.Search in Google Scholar

4. James, A. K., Thring, R. W., Helle, S., & Ghuman, H. S. (2012). Ash Management Review—Applications of Biomass Bottom Ash. Energies, 5, 3856-3873; DOI:10.3390/en5103856.10.3390/en5103856Search in Google Scholar

5. Misra, M. K., Ragland, K. W., & Baker, A. J. (1993). Wood ash composition as a function of furnace temperature. Biomass and Bioenergy Vol. 4, No. 2, 103-116.10.1016/0961-9534(93)90032-YSearch in Google Scholar

6. Nunes, L.J.R., Matias, J.C.O., & Catalão J.P.S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews 53, 235–242.10.1016/j.rser.2015.08.053Search in Google Scholar

7. Omil, B., Piñeiro, V., & Merino, A. (2007). Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Science of the Total Environment, 381, 157–168. DOI:10.1016/j.scitotenv.2007.04.004.10.1016/j.scitotenv.2007.04.00417499342Search in Google Scholar

8. Ozolinčius, R., Varnagiryte, I., Armolaitis, K., & Karltun, E. (2005). Initial Effects of Wood Ash Fertilization on Soil, Needle and Litterfall Chemistry in a Scots Pine (Pinus sylvestris L.) Stand. Baltic Forestry, 11(2), 59–67.Search in Google Scholar

9. Perkiömäki, J., & Fritze, H. (2005). Cadmium in upland forests after vitality fertilization with wood ash—a summary of soil microbiological studies into the potential risk of cadmium release. Biol Fertil Soils, 41, 75–84. DOI: 10.1007/s00374-004-0816-5.10.1007/s00374-004-0816-5Search in Google Scholar

10. Perkiomaki, J., Oili, K., Mikko, M., & Jorma, I. (2003). Cadmium-containing wood ash in a pine forest: effects on humus microflora and cadmium concentrations in mushroom, berries and needles. Canadian Journal of Forest Research, 33, 2443-2451. DOI: 10.1139/X03-169.10.1139/x03-169Search in Google Scholar

11. Pitman, R. M. (2006). Wood ash use in forestry – a revew of environmental impacts. Forestry, 79(5), 563–588. DOI:10.1093/forestry/cpl041.10.1093/forestry/cpl041Search in Google Scholar

12. Reimanna, C., Ottesena, R. T., Anderssona, M., Arnoldussenb, A., Kollerc, F., & Englmaierd, P. (2008). Element levels in birch and spruce wood ashes — green energy? Science of the total environment, 393, 191-197. DOI:10.1016/j.scitotenv.2008.01.015.10.1016/j.scitotenv.2008.01.01518262598Search in Google Scholar

13. Saarsalmi, A., Mälkönen, E., & Piirainen, S. (2001). Effects of Wood Ash Fertilization on Forest Soil Chemical Properties. Silva Fennica, 35(3), 355–368. Retrieved December 2, 2014, from PubMed database on the World Wide Web: http://dx.doi.org/10.14214/sf.590.Search in Google Scholar

14. Saarsalmi, A., Smolander, A., Moilanen, M., & Kukkola, M. (2014). Wood ash in boreal, low-productive pine stands on upland and peatland sites: Long-term effects on stand growth and soil properties. Forest Ecology and Management, 327, 86–95. DOI:10.1016/j.foreco.2014.04.031.10.1016/j.foreco.2014.04.031Search in Google Scholar

15. Saqib, N., & Bäckström, M. (2014). Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature. Waste Management, 34, 2505–2519.10.1016/j.wasman.2014.08.02525263218Search in Google Scholar

16. Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling 67, 27–33.10.1016/j.resconrec.2012.07.004Search in Google Scholar

17. Vanhanen, H., Dahl, O., & Joensuu, S. (2014). Utilization of wood ash as a road construction material - Sustainable use of wood ashes. Sustainable Environment Research 24(6), 457-465.Search in Google Scholar

18. Vassilev, S., Baxter, D., & Vassileva, C. (2013). An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel, 112, 391–449.10.1016/j.fuel.2013.05.043Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo