Acceso abierto

Green synthesis, characterization and antibacterial activities of silver nanoparticles from strawberry fruit extract


Cite

1. Chowdhury, I.H., Ghosh, S., Roy, M. & Naskar, M.K. (2015). Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J. Sol–Gel Sci. Technol., 73, 199–207. DOI: 10.1007/s10971-014-3515-1.10.1007/s10971-014-3515-1Open DOISearch in Google Scholar

2. Ravi, S.S., Christena, L.R., SaiSubramanian, N. & Anthony, S.P. (2013). Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst. 138, 4370–4377. DOI: 10.1039/c3an00320e.10.1039/c300320eOpen DOISearch in Google Scholar

3. Li, L., Zhou, G., Cai, J., Chen, J., Wang, P., Zhang, T., Ji, M. & Gu, N. (2014). Preparation and characterization of a novel nanocomposite: silver nanoparticles decorated cerasome. J. Sol–Gel Sci. Technol. 69, 199–206. DOI: 10.1007/s10971-013-3204-5.10.1007/s10971-013-3204-5Open DOISearch in Google Scholar

4. Gopinath, V., MubaraAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N. & Velusamy, P. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach, Coll. Surf. B: Biointerf. 96, 69–74. DOI:10.1016/j.colsurfb.2012.03.023.10.1016/j.colsurfb.2012.03.023Open DOISearch in Google Scholar

5. Bindhu, M.R. & Umadevi, M. (2013). Synthesis of mono-dispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta Part A: Molecu. Biomole. Spectrosc. 101, 184–190. DOI:10.1016/j.saa.2012.09.031.10.1016/j.saa.2012.09.031Open DOISearch in Google Scholar

6. Kruis, F., Fissan, H. & Rellinghaus, B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B. 69, 329–334. DOI: 10.1016/S0921-5107(99)00298-6.10.1016/S0921-5107(99)00298-6Open DOISearch in Google Scholar

7. Magnusson, M., Deppert, K., Malm J., Bovin J. & Samuelson, L. (1999), Gold nanoparticles: production, resha-ping, and thermal charging, J. Nanoparticle Res. 1, 243–251. DOI: 10.1023/A:1010012802415.10.1023/A:1010012802415Open DOISearch in Google Scholar

8. Goudarzi, M., Zarghami, Z. & Salavati-Niasari, M. (2016). Novel and solvent-free cochineal-assisted synthesis of Ag–Al2O3 nanocomposites via solid-state thermal decomposition route: characterization and photocatalytic activity assessment. J. Mater. Sci. Mater. Electron. 27, 9789–9797. DOI: 10.1007/s10854-016-5044-x.10.1007/s10854-016-5044-xSearch in Google Scholar

9. Oliveira, M., Ugarte, D., Zanchet, D. & Zarbin, A. (2005), Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Coll. Interf. Sci. 292, 429–435. DOI:10.1016/j.jcis.2005.05.068.10.1016/j.jcis.2005.05.068Open DOISearch in Google Scholar

10. Khomutov, G. & Gubin, S. (2002). Interfacial synthesis of noble metal nanoparticles. Mater. Sci. Eng. C. 22, 141–146. DOI: 10.1016/S0928-4931(02)00162-5.10.1016/S0928-4931(02)00162-5Search in Google Scholar

11. Mousavi-Kamazani, M. Salavati-Niasari, M., Mostafa-Hosseinpour-Mashkani, S. & Goudarzi, M. (2015). Synthesis and characterization of CuInS2 quantum dot in the presence of novel precursors and its application in dyes solar cells. Mater. Lett. 145, 99–103. DOI: 10.1016/j.matlet.2015.01.076.10.1016/j.matlet.2015.01.076Open DOISearch in Google Scholar

12. Joerger, R., Klaus, T. & Granqvist, C. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv. Mater. 12, 407–409. DOI: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA-407>3.0.CO;2-O.10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA-407>3.0.CO;2-OOpen DOISearch in Google Scholar

13. Shankar, S., Ahmad, A., Paricha, R. & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822–1826. DOI: 10.1039/b303808b.10.1039/b303808bOpen DOISearch in Google Scholar

14. Goudarzi, M., Mousavi-Kamazani, M. & Salavati-Niasari, M. (2017). Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci, Mater. Electron. 28, 8423–8428. DOI: 10.1007/s10854-017-6560-z.10.1007/s10854-017-6560-zOpen DOISearch in Google Scholar

15. Mousavi-Kamazani, M. Salavati-Niasari, M., Goudarzi, M. & Zarghami, Z. (2017). Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency. J. Mol. Liq. 242, 653–661. DOI: 10.1016/j.molliq.2017.07.059.10.1016/j.molliq.2017.07.059Open DOISearch in Google Scholar

16. Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H. & Nohi, A.A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42, 919–923. DOI: 10.1016/j.procbio.2007.02.00510.1016/j.procbio.2007.02.005Open DOISearch in Google Scholar

17. Varshney, R., Mishra, A.N., Bhadauria, S. & Gaur, M.S. (2009). A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest. J. Nanomater. Biostruct. 4, 349–355.Search in Google Scholar

18. Durán, N., Marcato, P.D., Alves, O.L., De Souza, G.I.H. & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3, 1–7. DOI: 10.1186/1477-3155-3-8.10.1186/1477-3155-3-8Open DOISearch in Google Scholar

19. Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H. & Varadarajan, P.V. (2006). A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch, Carbohyd. Res. 341, 2012–2018. DOI: 10.1016/j.carres.2006.04.042.10.1016/j.carres.2006.04.042Open DOISearch in Google Scholar

20. Ghaffari-Moghaddam, M. & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract, J. Ind. Eng. Chem. 20, 739–744. DOI: 10.1016/j.jiec.2013.09.005.10.1016/j.jiec.2013.09.005Open DOISearch in Google Scholar

21. Padalia, H., Moteriya, P. & Chanda, S. (2014). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential Arab. J. Chem. DOI: 10.1016/j.arabjc.2014.11.015.10.1016/j.arabjc.2014.11.015Open DOISearch in Google Scholar

22. Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S. & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep. 6, 32539. DOI: 10.1038/srep32539.10.1038/srep32539Open DOISearch in Google Scholar

23. Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.10.1016/j.biotechadv.2008.09.002Open DOISearch in Google Scholar

24. Lara, H.H., Garza-Trevino, E.N., Ixtepan-Turrent, L. & Singh, D.K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 9, 1–8. DOI: 10.1186/1477-3155-9-30.10.1186/1477-3155-9-30Open DOISearch in Google Scholar

25. Chernousova, S. & Epple, M. (2013), Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem. Int. Ed. Eng. 52, 1636–1653, https://doi.org/10.1002/anie.201205923.10.1002/anie.201205923Open DOISearch in Google Scholar

26. Ahmed, M.J., Murtaza, G., Mehmood, A. & Bhatti, T.M. (2015). Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett. 153, 10–13. DOI: 10.1016/j.matlet.2015.03.143.10.1016/j.matlet.2015.03.143Open DOISearch in Google Scholar

27. Manganaris, G.A., Goulas, V., Vicente, A.R. & Terry, L.A. (2014). Berry antioxidants: small fruits providing large benefits. J. Sci. Food Agric. 94, 825–33. DOI: 10.1002/jsfa.6432.10.1002/jsfa.6432Open DOISearch in Google Scholar

28. Basu, A., Nguyen, A., Betts, N.M. & Lyons, T.J. (2014). Strawberry as a functional food: an evidence-based review. Critical Rev. Food Sci. Nutri. 54, 790–806. DOI: 10.1080/10408398.2011.608174.10.1080/10408398.2011.608174Open DOISearch in Google Scholar

29. Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J.L., Ferreiro, M.S., Tulipani, S. & Battino, M. (2013). The potential impact of strawberry on human health. Nat. Prod. Res. 27, 448–55. DOI: 10.1080/14786419.2012.706294.10.1080/14786419.2012.706294Open DOISearch in Google Scholar

30. Rios, J.L., Recio, M.C. & Villar, A. (1988). Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol. 23, 127–149. DOI: 10.1016/0378-8741(88)90001-3.10.1016/0378-8741(88)90001-3Open DOISearch in Google Scholar

31. Wei, D., Sun, W., Qian, W., Ye, Y. & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344, 2375–2382. DOI: 10.1016/j.carres.2009.09.001.10.1016/j.carres.2009.09.00119800053Open DOISearch in Google Scholar

32. Solomon, M.M. & Umoren, S.A. (2016), In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Coll. Interf. Sci. 462, 29–41. DOI: 10.1016/j.jcis.2015.09.057.10.1016/j.jcis.2015.09.05726433475Open DOISearch in Google Scholar

33. Stamplecoskie, K.G. & Scaiano, J.C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 132, 1825–1827. DOI: 10.1021/ja910010b.10.1021/ja910010b20102152Open DOISearch in Google Scholar

34. Solomon, M.M., Umoren, S.A. & Abai, E.J. (2015). Poly(methacrylic acid)/silver nanoparticles composites: In-situ preparation, characterization and anticorrosion property for mild steel in H2SO4 solution. J. Mol. Liq. 212, 340–351. DOI: 10.1016/j.molliq.2015.09.028.10.1016/j.molliq.2015.09.028Open DOISearch in Google Scholar

35. Prathna, T.C., Chandrasekaran, N., Raichur, A.M. & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Coll. Surf. B: Biointerf. 82, 152–159. DOI: 10.1016/j.colsurfb.2010.08.036.10.1016/j.colsurfb.2010.08.03620833002Open DOISearch in Google Scholar

36. Jagadeesh, B.H., Prabha, T.N. & Srinivasan, K. (2004). Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var.variata). Plant Sci. 167, 1263–1271. DOI: 10.1016/j.plant-sci.2004.06.031.10.1016/j.plant-sci.2004.06.031Open DOISearch in Google Scholar

37. Cordenunsi, B.R., Oliveira do Nascimento, J.R., Genovese, M.I. & Lajolo, F.M. (2002). Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil, J. Agric. Food Chem. 50, 2581–2586. DOI: 10.1021/jf011421i10.1021/jf011421i11958626Open DOISearch in Google Scholar

38. Zayed, M.F., Eisa, W.H., Abdel-Moneam, Y.K., El-Kousy, S.M. & Atia, A. (2015). Ziziphus spina-christi based bio-synthesis of Ag nanoparticles. J. Ind. Eng. Chem. 23, 50–56. DOI: 10.1016/j.jiec.2014.07.04110.1016/j.jiec.2014.07.041Open DOISearch in Google Scholar

39. Lateef, A., Azeez, M.A., Asafab, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Azeez, L., Ajibade, S.E., Ojo, S.A., Gueguim-Kana, E.B. & Beukes, L.S. (2016). Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univer Sci. 10, 551–562. DOI: 10.1016/j.jtusci.2015.10.010.10.1016/j.jtusci.2015.10.010Search in Google Scholar

40. Solomon, M.M., Umoren, S.A. & Ebenso, E.E. (2015). Polypropylene glycol-silver nanoparticle composites: a novel anticorrosion material for aluminum in acid medium, J. Mater. Eng. Perform. 24, 4206–4218. DOI: 10.1007/s11665-015-1716-6.10.1007/s11665-015-1716-6Open DOISearch in Google Scholar

41. Rao, Y.S., Kotakadi, V.S., Prasad, T.N.V.K.V., Reddy, A.V. & Sai Gopal, D.V.R. (2013). Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim. Acta Part A: Mol. Biomol. Spec. 103, 156–159. DOI: 10.1016/j.saa.2012.11.028.10.1016/j.saa.2012.11.02823257344Open DOISearch in Google Scholar

42. Edison T.J.I. & Sethuraman M.G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357. DOI: 10.1016/j.procbio.2012.04.025.10.1016/j.procbio.2012.04.025Open DOISearch in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering