Cite

1. Bulter, H. (2000). Poucher’s perfumes, cosmetics and soaps (10th ed.). London. United Kingdom: Kluwer Academic Publishers.Search in Google Scholar

2. Elser, P. & Maibach, H. (2000). Cosmeceuticals and active cosmetics. New York, USA: Taylor & Francis Group.Search in Google Scholar

3. Wang, W., Sun, F., An, Y., Ai, H., Zhang L., Huang, W. & Li, L. (2009). Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613(1–3), 19–23. DOI: 10.1016/j.ejphar.2009.04.013.10.1016/j.ejphar.2009.04.01319379729Open DOISearch in Google Scholar

4. Seeram, N.P. & Nair, M.G. (2002). Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 50(9), 5308–5312. DOI: 10.1021/jf025671.10.1021/jf025671Open DOISearch in Google Scholar

5. Vareed, S.K., Reddy, M.K., Schutzki, R.E. & Nair, M.G. (2006). Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 11, 78(7), 777–784. DOI: 10.1016/j.lfs.2005.05.094.10.1016/j.lfs.2005.05.09416139847Open DOISearch in Google Scholar

6. Kyriakopoulos, A.M. & Dinda, B. (2015). Cornus mas (Linnaeus) novel devised medicinal preparations: bactericidal effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 20, 11202–11218. DOI:10.3390/molecules200611202.10.3390/200611202Open DOISearch in Google Scholar

7. Tural, S. & Koca, I. (2008). Physicochemical and antioxidant properties of Cornelian Cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic. 116, 362–366. DOI: 10.1016/J.Scienta.2008.02.003.10.1016/J.Scienta.2008.02.003Open DOISearch in Google Scholar

8. Klimenko, S.W. (2004). The cornelian cherry (Cornus mas L.) collection, preservation and utilization of genetic resources. J. Fruit Ornam. Plant Res. 12, 93–98. INRMM:13555513.Search in Google Scholar

9. Pawlowska, A.M., Camangi, F. & Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem. 119, 1257–1261. DOI: 10.1016/j.foodchem.2009.07.063.10.1016/j.foodchem.2009.07.063Open DOISearch in Google Scholar

10. Niemmen, M., Suomi, J., Nouhuys, S., Sauri, P. & Riekkola, M.L. (2003). Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 29(4). ID: 12775146.Search in Google Scholar

11. Vodovotz, Y., Constantine, G., Rubin, J., Csete, M., Voit E.O. & An G. (2009). Mechanistic simulations of inflammation: current state and future prospects. Math. Biosc. 217, 1–10. DOI: 10.1016/j.mbs.2008.07.013.10.1016/j.mbs.2008.07.013266796618835282Open DOISearch in Google Scholar

12. Calixto, J.B., Campos, M.M., Otuki, M.F. & Santos, A.R.S. (2004). Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70, 93–103. DOI: 10.1055/s-2004-815483.10.1055/s-2004-81548314994184Open DOISearch in Google Scholar

13. Háznagy-Radnai, E., Balogh, A., Czigle, S., Máthé, I., Hohmann, J. & Blazsó, G. (2011). Antiinflammatory activities of hungarian stachys species and their iridoids. Phytother Res. 26(4), 505–509. DOI: 10.1002/ptr.3582.10.1002/ptr.358221887806Open DOISearch in Google Scholar

14. Masuda, M., Itoh K., Murata K., Naruto S., Uwaya A., Isami, F. & Matsuda, H. (2012). Inhibitory effects of Morinda citrifolia extract and its constituents on melanogenesis in murine B16 melanoma cells. Biol. Pharm. Bull. 35(1), 7–83. DOI: 10.2145/biol.2012.3254.10.2145/biol.2012.3254Open DOISearch in Google Scholar

15. Akihisa, T., Seino, K., Kaneko, E., Watanabe, K., Tochizawa, S., Fukatsu, M., Banno, N., Metori, K. & Kimura, Y. (2010). Melanogenesis inhibitory activities of iridoid, hemiterpene, and fatty acid-glycosides from the fruits of Morinda citrifolia (Noni). J. Oleo Sci. 59(1), 49–57. DOI: 10.5650/jos.59.49.10.5650/jos.59.49Open DOISearch in Google Scholar

16. Saracoglu, I. & Harput, U.S. (2012). In vitro cytotoxic activity and structure activity relationships of iridoid glucosides derived from Veronica species. Phytother. Res. 26(1), 148–152. DOI: 10.1002/ptr.3546.10.1002/ptr.3546Open DOISearch in Google Scholar

17. Saracoglu, I., Oztunca, F.H., Nagatsu, A. & Harput, U.S. (2011). Iridoid content and biological activities of Veronica cuneifolia subsp. cuneifolia and Veronica cymbalaria. Pharm. Biol. 49(11), 1150–1157. DOI: 10.3109/13880209.2011.575790.10.3109/13880209.2011.575790Open DOISearch in Google Scholar

18. Es Haghi, M., Dehghan, G., Banihabib, N., Zare, S., Mikaili, P. & Panahi, F. (2012). Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats. Indian J. Nephrol. 24(5), 291–296. DOI: 10.4103/0971-4065.133000.10.4103/0971-4065.133000Open DOISearch in Google Scholar

19. Koichiro, K. & Shoichi, H. (1992). U.S. Patent no. 5,078,750. Washington, D.C.: U.S. Patent and Trademark Office.Search in Google Scholar

20. Baj, T., Kołtunowska, D., Głowniak, K. & Wolski, T. (2015). Determination of aucubin in aerial parts of Buddleja davidii Franch. using different TLC-detection methods. XX. 46 symposium on essential oils. Lublin, Poland, Annales Universitatis Maria Curie-Sklodowska.Search in Google Scholar

21. Brand-Williamis, W., Cuvelier, M. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30. DOI: 0023-6438/95/010025.10.1016/S0023-6438(95)80008-5Search in Google Scholar

22. Re, R., Pellegrini, N., Protegente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. DOI: 0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Search in Google Scholar

23. Płocica, J., Tal-Figiel, B. & Figiel, W. (2014). Badania reologiczne i sensoryczne stosowane do oceny preparatów kosmetycznych. Ś.P.K. 17(1), 68–73.Search in Google Scholar

24. Lim, T.Y., Lim, Y.Y. & Yule, C.M. (2009). Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 114, 594–599. DOI: 10.1016/j.foodchem.2008.09.093.10.1016/j.foodchem.2008.09.093Open DOISearch in Google Scholar

25. Studzińska-Sroka, E., Frątczak, A. & Bylka, W. (2016). Evaluation of properties inhibiting tyrosinase by selected plant extracts. Pol. J. Cosmetol. 19(1), 51–55.Search in Google Scholar

26. West, B.J., Deng, S., Jensen, J., Palu, A.K. & Berrio, F.L. (2012). Antioxidant, toxicity, and iridoid tests of processed cornelian cherry fruits. IJFST. 7, 1392–1397. DOI: 10.1111/j.1365-2621.2012.02985.10.1111/j.1365-2621.2012.02985Open DOISearch in Google Scholar

27. Kwak, H., Kim, H.J., Lee, K.H., Kang, S.C. & Zee, O.P. (2009). Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrine. Jong. Arch. Pharm. Res. 32(2), 207–213. DOI: 10.1007/s12272-009-1137-x.10.1007/s12272-009-1137-x19280150Open DOISearch in Google Scholar

28. Wael, M., Abdel-Mageed, A., Enaam, Y., Backheet, A. Azza, A., Khalifa, A. Zedan, Z., Ibraheim, A. & Samir, A. (2007). Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis. Fitoterapia 83(3), 500–507. DOI: 10.1016/j.fitote.2011.12.025.10.1016/j.fitote.2011.12.02522245081Open DOISearch in Google Scholar

29. Kucharska, M. (2012). Związki aktywne owoców derenia. Wrocław, Poland, Uniwersytet Przyrodniczy we Wrocławiu.Search in Google Scholar

30. Xiao, N.M., Xue, X.Y., Feng, J.T., Zhang, X.L. & Liang, X.M. (2011). Isolation and purification of unstable iridoid glucosides from traditional chinese medicine by preparative high performance liquid chromatography coupled with solid-phase extraction. Chem. Res. Chinese Univ. 27(3), 392–396. DOI: 1005-9040(2011)-03-392-05.Search in Google Scholar

31. Norlia, M, Siti, A.M, Mashitah, M.Y. & Jolius, G. (2014). Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J. Food Sci. Eng. 4, 255–260. DOI: 10.17265/2159-5828/2014.05.006.10.17265/2159-5828/2014.05.006Open DOISearch in Google Scholar

32. Dai, J. & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 21:15(10), 7313–7352. DOI: 10.3390/molecules15107313.10.3390/molecules15107313Search in Google Scholar

33. Pacifico, S., D’Abrosca, B., Pascarella, M.T., Letizia, M., Uzzo, P., Piscopo, V. & Fiorentino, A. (2009). Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems. Bioorg. Med. Chem. (17), 6173–6179. DOI: 10.1016/j.bmc.2009.07.065.10.1016/j.bmc.2009.07.065Open DOISearch in Google Scholar

34. Polinicencu, C., Popescu, H. & Nistor, C. (1980). Vegetal extracts for cosmetic use: extracts from fruits of Cornus mas. Preparation and characterization. Cluj. Med. 53, 160–163.Search in Google Scholar

35. Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A. & Diamantidis, G.R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 102, 777–783. DOI: 10.1016/j.foodchem.2006.06.021.10.1016/j.foodchem.2006.06.021Open DOISearch in Google Scholar

36. Demir, F. & Kalyoncu, I.H. (2003). Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J. Food Eng. 60, 335–341. DOI: 10.1016/S0260-8774(03)00056-6.10.1016/S0260-8774(03)00056-6Open DOISearch in Google Scholar

37. Celep, E., Aydın, A. & Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: cornelian cherry, Japanese persimmon and cherry laurel. Food. Chem. Toxicol. 50, 3329–3335. DOI: 10.1016/j.fct.2012.06.010.10.1016/j.fct.2012.06.01022713712Open DOISearch in Google Scholar

38. Jackson, C.T., Paye, M. & Maibach, H. (2014). Mechanism of skin irritation by surfactants and anti-irritants for surfactants base products (pp. 353–358). In Barel, A., Paye, M. & Maibach, H. Handbook of cosmetic science and technology. Fourth edition. Bosta Rocon. USA: CRC Press Taylor & Francis Group.Search in Google Scholar

39. Lips, A., Ananthapadmanabhan, K.P., Vethamuthu, M., Hua, X.Y., Yang, L., Vincent, C., Deo N. & Somasundaran, P. (2007). Role of surfactant micelle charge in protein denaturation and surfactant-induced skin irritation, (pp. 177–189). In Rhein, L., Schlossman, M., O’Lenick, A. & Somasundaran, P. Surfactants in personal care products and decorative cosmetics third edition. Bosta rocon, USA: CRC Press Taylor & Francis Group.Search in Google Scholar

40. Agner, T. & Serup, J. (1990). Sodium lauryl sulphate for irritant patch testing—A dose-response study using bioengineering methods for determination of skin irritation. J. Invest. Dermatol. 95, 543–547. DOI: 022-202X/90/S03.50.10.1111/1523-1747.ep125048962230217Search in Google Scholar

41. Polefka, T. (1999). Surfactants interaction with skin. In Broze, G. Handbook of detergents. Part A: Properties. Surf. Sci. Ser. Vol. 82. Marcel Dekker Publ.Search in Google Scholar

42. Bujak, T., Wasilewski, T. & Nizioł-Łukaszewska, Z. (2015). Role of macromolecules in the safety of use of body wash cosmetics, Coll. Surf. B. 135, 497–503. DOI: 10.1016/j.colsurfb.2015.07.051.10.1016/j.colsurfb.2015.07.05126291586Open DOISearch in Google Scholar

43. Draelos, Z.D. & Dover, J.S. (2011). Kosmeceutyki. Wroclaw, Poland: Elsevier, Urban&Partner.Search in Google Scholar

44. Kima, Y.J. & Uyamab, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707–1712. DOI: 10.1007/s00018-005-5054-y.10.1007/s00018-005-5054-y15968468Open DOISearch in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering