Acceso abierto

Fabrication of Titanium dioxide nanotube photo-electrodes in different electrolyte mixtures and the impacts on their characteristics and photo-catalytic abilities under visible light


Cite

1. Chen, Q., Liu, H., Xin, Y., Cheng, X., Zhang, J., Li, J., Wang, P. & Li, H. (2013). Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta, 99, 152-160. DOI: 10.1016/j.electacta.2013.03.032.10.1016/j.electacta.2013.03.032Search in Google Scholar

2. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Construction of n, s codoped TiO2 ncs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta, 103, 134-142. DOI: 10.1016/j.electacta.2013.04.072.10.1016/j.electacta.2013.04.072Search in Google Scholar

3. Yao, Y., Li, K., Chen, S., Jia, J., Wang, Y. & Wang, H. (2012). Decolorization of rhodamine b in a thin-fi lm photoelectrocatalytic (pec) reactor with slant-placed TiO2 nanotubes electrode. J. Chem. Eng. 187, 29-35. DOI: 10.1016/j. cej.2012.01.056.Search in Google Scholar

4. Sun, S., Chen, C., Sun, J., Peng, Q., Lü, K. & Deng, K. (2013). Enhancement of catalytic degradation of rhodamine b under sunlight with au loading TiO2 nanotube arrays. J. Procedia Environ. Sci. 18, 620-624. DOI: 10.1016/j.proenv.2013.04.085.10.1016/j.proenv.2013.04.085Search in Google Scholar

5. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic effi ciency for degradation of diclofenac. J. Hazard. Mater. 254, 141-148. DOI: 10.1016/j.jhazmat.2013.03.062.10.1016/j.jhazmat.2013.03.062Search in Google Scholar

6. Yu, X., Zhang, Y. & Cheng, X. (2014). Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite. Electrochim. Acta 137, 668-675. DOI: 10.1016/j. electacta.2014.06.027.Search in Google Scholar

7. Zhong, H., Shaogui, Y., Yongming, J. & Cheng, S. (2009). Microwave photocatalytic degradation of rhodamine b using TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci. 21(2), 268-272. DOI: 10.1016/ S1001-0742(08)62262-7.10.1016/S1001-0742(08)62262-7Search in Google Scholar

8. Fan, M., Hu, S., Ren, B., Wang, J. & Jing, X. (2013). Synthesis of nanocomposite TiO2 /zro 2 prepared by different templates and photocatalytic properties for the photodegradation of rhodamine b. J. Pow. Technol. 235, 27-32. DOI: 10.1016/j.powtec.2012.09.042.10.1016/j.powtec.2012.09.042Search in Google Scholar

9. Cheng, X., Pan, G. & Yu, X. (2015). Visible light responsive photoassisted electrocatalytic system based on cds ncs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment. Electrochim. Acta. 156, 94-101. DOI:10.1016/j.electacta.2015.01.042.10.1016/j.electacta.2015.01.042Search in Google Scholar

10. Chen, Q., Liu, H., Xin, Y. & Cheng, X. (2013). TiO2 nanobelts-effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. Electrochim. Acta. 111, 284-291. DOI: 10.1016/j.electacta.2013.08.049.10.1016/j.electacta.2013.08.049Search in Google Scholar

11. Momeni, M. (2015). Fabrication of copper decorated tungsten oxide-titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light, Appl. Surf. Sci. 357, 160-166. DOI: 10.1016/j. apsusc.2015.09.015.Search in Google Scholar

12. Momeni, M., Hakimian, M. & Kazempour A. (2015). In-situ manganese doping of TiO2 nanostructures via singlestep electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst. Ceram. Int. 41, 13692-13701. DOI: 10.1016/j. ceramint.2015.07.158.Search in Google Scholar

13. Momeni, M. & Nazari, Z. (2016). Preparation of TiO2 and WO3-TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process: A stable and effi cient photocatalyst. Ceram. Int. 42, 8691-8697. DOI: 10.1016/j. ceramint.2016.02.103.Search in Google Scholar

14. Cheng, X., Yu, X. & Xing, Z. (2013). Synthesis and characterization of c-n-s-tridoped TiO2 nano-crystalline photocatalyst and its photocatalytic activity for degradation of rhodamine b. J. Phys. Chem. Sol. 74(5), 684-690. DOI: 10.1016/j.jpcs.2013.01.004.10.1016/j.jpcs.2013.01.004Search in Google Scholar

15. Cao, G.J., Bo, C., Wang, W.Q., Tang, G.Z., Feng, Y.C. & Wang, L.P. (2014). Fabrication and photodegradation properties of TiO2 nanotubes on porous ti by anodization. J. Trans. Nonferrous Met. Soc. China 24(8), 2581-2587. DOI: 10.1016/ S1003-6326(14)63386-0.10.1016/S1003-6326(14)63386-0Search in Google Scholar

16. Momeni, M., Mirhosseini, M. & Chavoshi, M. (2016). Growth and characterization of Ta2O5 nanorod and WTa2O5 nanowire fi lms on the tantalum substrates by a facile onestep hydrothermal method. Ceram. Int. 42, 9133-9138. DOI: 10.1016/j.ceramint.2016.03.002.10.1016/j.ceramint.2016.03.002Search in Google Scholar

17. Bai, J., Zhou, B., Li, L., Liu, Y., Zheng, Q., Shao, J., Zhu, X., Cai, W., Liao, J. & Zou, L. (2008). The formation mechanism of titania nanotube arrays in hydrofl uoric acid electrolyte. J. Mater. Sci. 43(6), 1880-1884. DOI: 10.1007/ s10853-007-2418-8.10.1007/s10853-007-2418-8Search in Google Scholar

18. Momeni, M. & Ghayeb, Y. (2016). Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods, J. Mol. Catal. A - Chemical. 417, 107-115. DOI: 10.1016/j.molcata.2016.03.024.10.1016/j.molcata.2016.03.024Search in Google Scholar

19. Momeni, M. & Ghayeb, Y. (2016). Fabrication, characterization and photoelectrochemical performance of chromiumsensitized titania nanotubes as effi cient photoanodes for solar water splitting, J. Sol. Stat. Electrochem. 20, 683-689, DOI: 10.1007/s10008-015-3093-3.10.1007/s10008-015-3093-3Search in Google Scholar

20. Momeni, M. & Ghayeb, Y. (2016). Cobalt modifi ed tungsten-titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J. Mater Sci: Mater Electron. 27, 3318-3327. DOI: 10.1007/s10854-015-4161-2.10.1007/s10854-015-4161-2Search in Google Scholar

21. Momeni, M., Mirhosseini, M., Chavoshi, M. & Hakimizade, A. (2016). The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure. J. Mater Sci: Mater Electron. 27, 3941-3947. DOI: 10.1007/ s10854-015-4246-y.10.1007/s10854-015-4246-ySearch in Google Scholar

22. Momeni, M., Hakimian, M. & Kazempour, A. (2016). Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng. 32(7), 514-519. DOI: 10.1179/1743294415Y.0000000073.10.1179/1743294415Y.0000000073Search in Google Scholar

23. Momeni, M., Ghayeb, Y. & Ghonchegi, Z. (2015). Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as effi cient visiblelight photocatalyst. Ceram. Int. 41, 8735-8741. DOI: 10.1016/j. ceramint.2015.03.094.Search in Google Scholar

24. Momeni, M. & Ghayeb, Y. (2015). Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloys Compd.. 637, 393-400. DOI: 10.1016/j.jallcom.2015.02.137.10.1016/j.jallcom.2015.02.137Search in Google Scholar

25. Momeni, M., Ghayeb, Y. & Davarzadeh, M. (2015). Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J. Electroanal. Chem. 739, 149-155. DOI: 10.1016/j.jelechem.2014.12.030.10.1016/j.jelechem.2014.12.030Search in Google Scholar

26. Xu, C.L., Bao, S.J., Kong, L.B., Li, H. & Li, H.L. (2006). Highly ordered MnO2 nanowire array thin fi lms on ti/si substrate as an electrode for electrochemical capacitor. J. Solid State Chem. 179(5), 1351-1355. DOI: 10.1016/j.jssc.2006.01.058.10.1016/j.jssc.2006.01.058Search in Google Scholar

27. Sklar, G., Singh, H., Mahajan, V., Gorhe, D., Namjoshi, S. & LaCombe, J. (2005). Nanoporous titanium oxide morphologies produced by anodizing of titanium. MRS Proceedings: Cambridge Univ Press p. R1 2 DOI: 10.1557/PROC-876-R1.2.10.1557/PROC-876-R1.2Search in Google Scholar

28. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2014). Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Carbon 66, 450-458. DOI: 10.1016/j. carbon.2013.09.021.Search in Google Scholar

29. Tian, C.Y., Zhao, W.W., Wang, J., Xu, J.J. & Chen, H.Y. (2012). Amplifi ed quenching of electrochemiluminescence from cds sensitized TiO2 nanotubes by cdte-carbon nanotube composite for detection of prostate protein antigen in serum. J. Analyst 137(13), 3070-3075. DOI: 10.1039/C2AN35493D.10.1039/c2an35493dSearch in Google Scholar

30. Al-Sammarraie, A.M.A. (2014). The role of anodizing potentials in making TiO2 nanotubes in (ethylene glycol / nh 4 f /water) electrolyte. Arch. Appl. Sci. Res. 11-13.Search in Google Scholar

31. Okada, M., Tajima, K., Yamada, Y. & Yoshimura, K. (2012). Self-organized formation of short TiO2 nanotube arrays by complete anodization of ti thin fi lms. J. Phys. Proc. 32, 714-718. DOI: 10.1016/j.phpro.2012.03.622.10.1016/j.phpro.2012.03.622Search in Google Scholar

32. Byun, C., Jang, J., Kim, I., Hong, K. & Lee, B.W. (1997). Anatase-to-rutile transition of titania thin fi lms prepared by mocvd. J. Mater. Res. Bull. 32(4), 431-440. DOI: 10.1016/ S0025-5408(96)00203-6.10.1016/S0025-5408(96)00203-6Search in Google Scholar

33. Merabet, S., Robert, D., Weber, J.V., Bouhelassa, M. & Benkhanouche, S. (2009). Photocatalytic degradation of indole in uv/tio2: Optimization and modelling using the response surface methodology (rsm). J. Environ. Chem. Lett. 7(1), 45-49. DOI: 10.1007/s10311-008-0137-2.10.1007/s10311-008-0137-2Search in Google Scholar

33. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Bianchi, C.L., Cappelli, S., Oliva, C., Scardi, P., Leoni, M. & Fermo, P. (2010). Solar photoactivity of nano-n-TiO2 from tertiary amine: Role of defects and paramagnetic species. J. Appl. Catal. 96(3), 314-322. DOI: 10.1016/j.apcatb.2010.02.027.10.1016/j.apcatb.2010.02.027Search in Google Scholar

34. Khataee, A., Arefi -Oskoui, S., Fathinia, M., Esmaeili, A., Hanifehpour, Y., Joo, S.W. & Hamnabard, N. (2015). Synthesis, characterization and photocatalytic properties of er-doped pbse nanoparticles as a visible light-activated photocatalyst. J. Mol. Catal. A: Chem. 398, 255-267. DOI: 10.1016/j. molcata.2014.11.009.Search in Google Scholar

35. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. J. Chem. Rev. 95(1), 69-96. DOI: 10.1021/ cr00033a004.10.1021/cr00033a004Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering