Acceso abierto

Research on flux decline in nanofiltration of lactic acid solutions with ZRIV/PAA membranes application

   | 13 oct 2016

Cite

1. Parajo, J.C., Alonso, J.L. & Santos, V. (1996). Lactic acid from wood. Proc. Biochem. 31, 271-280. DOI: 10.1016/0032-9592(95)00059-3.10.1016/0032-9592(95)00059-3Search in Google Scholar

2. Turkson, A.K., Mikhlin, J.A. & Weber, M.E. (1984). Dynamic membranes for ultrafiltration. J. Coll. Inter. Sci. 101, 583-586. DOI: 10.1016/0021-9797(84)90072-9.10.1016/0021-9797(84)90072-9Search in Google Scholar

3. Pessoa de Amorim, M.T. & Ramos Afonso I.R. (2006). Control of irreversible fouling by application of dynamic membranes. Desalination. 192, 63-67. DOI: 10.1016/jdesal.2005.10.011.Search in Google Scholar

4. Polom, E. & Szaniawska, D. (2006). Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method. Desalination 198, 208-214. DOI: 10.1016/j.desal.2006.04.002.10.1016/j.desal.2006.04.002Search in Google Scholar

5. Polom, E. (2004). Research on nanofiltration process of lactic acid solutions. Unpublished doctoral dissertation, Technical University of Szczecin, Szczecin, Poland.Search in Google Scholar

6. Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z. & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 272, 1-8. DOI: 10.1016/j.desal.2011.01.051.10.1016/j.desal.2011.01.051Search in Google Scholar

7. Shi X., Tal G., Hankins Nicolas P., Gitis V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. J. Water Proc. Engine. 1, 121-138. DOI: 10.101/j.jwpe.2014.04.003.10.1016/j.jwpe.2014.04.003Search in Google Scholar

8. Hoek, E. & Elimelech, M. (2003). Cake - Enchanced Concentration Polarization: A New fouling mechanism for Salt- Rejecting Membranes. Environ. Sci. Technol. 37, 5581-5588. DOI: 10.1021/es0262636.10.1021/es0262636Search in Google Scholar

9. Konieczny, K. (2002). Modelling of membrane filtration of natural water for potable purposes. Desalination 143, 123-139. DOI: 10.1016/S0011-9164(02)00234-5.10.1016/S0011-9164(02)00234-5Search in Google Scholar

10. Rajca, M., Bodzek, M. & Konieczny, K. (2009), Application of mathematical models to the calculation of ultrafiltration flux in water treatment. Desalination 239, 100-110. DOI: 10.1016/j.desal.2008.03.010.10.1016/j.desal.2008.03.010Search in Google Scholar

11. Konieczny K., Rajca M., Bodzek M., Kwiecińska A., (2009). Water treatment using hybrid method of coagulation and low-pressure membrane filtration. Environ. Prot. Eng. 35, 5-23. DOI: 10.5277/epel40407.Search in Google Scholar

12. Linares, R.V., Yangali-Quintanilla, V., Li, Z., Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 45, 6737-6744, DOI: 10.1016/j.waters.2011.10.37.Search in Google Scholar

13. Polom, E. & Szaniawska, D. (2003). Optimization of nanofiltration process of lactic acid solutions employing statistical experimental design. Environ. Prot. Eng. 29, 69-81, DOI: 10.5277/epe.Search in Google Scholar

14. Tanny, G.B. & Johnson, J.S. (1978). The Structure of Hydrous Zr(IV) Oxide-Polyacrylate Membranes: Poly(acrylic Acid) Deposition. J. Appl. Polym. Sci. 22, 289-287. DOI: 10.1002/app.1978.070220121.10.1002/app.1978.070220121Search in Google Scholar

15. Ozari, Y., Tanny, G. & Jagur-Grodziński, J. (1977) Dynamic Deposition of Polyacids on Porous Membrane Supports. J. Appl. Polym. Sci. 21, 555-572. DOI: 10.1002/ app.1977.07021022110.1002/app.1977.070210221Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering