Acceso abierto

Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge


Cite

1. Zapata, F. (2008). Introduction to nitrogen management in agricultural systems. In: Guide. Nitr. Managem. Agric. Syst., Vienna: IAEA.Search in Google Scholar

2. Mosier, A.R., Syers, J.K. & Freney, J.R. (2004). Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, St. Louis, MI: Island Press.Search in Google Scholar

3. Brown, L.R. (1999). Feeding nine billion. In L.R. Brown, C. Flavin, H. French (Eds.), State of the world: A Worldwatch Institute report on progress toward a sustainable society, New York: W.W. Norton & Company.Search in Google Scholar

4. United Nations, Department of Economic and Social Affairs, Population Division, (2013). World Population Prospects: The 2012 Revision, DVD Edition.Search in Google Scholar

5. International Fertilizer Industry Association, Statistics, Market Outlooks; http://www.fertilizer.org/MarketOutlooks.html (accessed Aug 26, 2015).Search in Google Scholar

6. van Cleemput, O., Zapata, F. & Vanlauwe, B. (2008). Use of tracer technology in mineral fertilizer management. In: Guide. Nitr. Managem. Agric. Syst., Vienna: IAEA.Search in Google Scholar

7. Dobermann, A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt: IFA.Search in Google Scholar

8. Smil, V.A. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycl., 3, 647–662. DOI: 10.1029/1999GB900015.10.1029/1999GB900015Search in Google Scholar

9. Fan, X., Li, F., Liu, F. & Kumar, D. (2004). Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat. J. Plant Nutr., 27, 853–865. DOI: 10.1081/PLN-120030675.10.1081/PLN-120030675Search in Google Scholar

10. Hauck, R.D. (1985). Slow release and bio-inhibitor-amended nitrogen fertilizers. In: O.P. Engelstad (Ed.), Fert. Technol. Use, Madison, WI: SSSA.Search in Google Scholar

11. Shaviv, A. & Mikkelsen, R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res., 35, 1–12. DOI: 10.1007/BF00750215.10.1007/BF00750215Search in Google Scholar

12. Trenkel, M.E. (2010). Controlled-release and stabilized fertilizers in agriculture, Paris: IFA.Search in Google Scholar

13. Chien, S.H., Prochnow, L.I., Tu, S. & Snyder, C.S. (2011). Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr. Cycl. Agroecosyst., 89, 229–255. DOI: 10.1007/s10705-010-9390-4.10.1007/s10705-010-9390-4Search in Google Scholar

14. Finck, A. (1992). Fertilizers and their efficient use. In: D.J. Halliday, M.E. Trenkel, W. Wichmann, (Eds.). World Fert. Use Man., Paris: IFA.Search in Google Scholar

15. Shaviv, A. (2000). Advances in controlled release fertilizers. Adv. Agron., 71, 1–49.Search in Google Scholar

16. Górecki, H. (2003). The environmental impact of fertilizer production and use. Przem. Chem., 82(8–9), 833–836.Search in Google Scholar

17. Hofman, G. & van Cleemput, O. (2004). Nitr. Soil Plant. Paris: IFA.Search in Google Scholar

18. Follett, J.R., Follett, R.F. & Herz, W.C. (2010). Environmental and human impacts of reactive nitrogen. In: J.A. Delgado, R.F. Follett (Eds.), Adv. Nitr. Managem. Water Qual., Ankeny, IA: SWCS.Search in Google Scholar

19. EEA Raport No7/2005. (2005). Source apportionment of nitrogen and phosphorus inputs into the aquatic environment, Copenhagen: EEA.Search in Google Scholar

20. Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R., Mallin, M.A., Rogers, C.A., Wayne, P. & Wolfe, A.H. (2003). Human health effects of a changing global nitrogen cycle, Ecol. Environ., 1(5), 240–246. http://dx.doi.org/10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2Search in Google Scholar

21. Smith, J.E. & Beutler, E. (1966). Methaemoglobin formation and reduction in man and various animal species. Am. J. Physiol., 210(2), 347–350.10.1152/ajplegacy.1966.210.2.347Search in Google Scholar

22. Newbould, P. (1989). The use of nitrogen fertilizer in agriculture. Where do we go practically and ecologically? Plant and Soil. 115, 297–311. DOI: 10.1007/BF02202596.10.1007/BF02202596Search in Google Scholar

23. Forman, D. (1989). Are nitrates a significant risk factor in human cancer?, Cancer Surv., 8, 443–458.Search in Google Scholar

24. Freibauer, A. (2003). Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur. J. Agron., 19(2), 135–160. DOI: 10.1016/S1161-0301(02)00020-5.10.1016/S1161-0301(02)00020-5Search in Google Scholar

25. Sharpley, A.N. & Menzel, R.G. (1987). The impact of soil and fertiliser phosphorus on the environment. Adv. Agron., 41, 297–324.10.1016/S0065-2113(08)60807-XSearch in Google Scholar

26. Sims, J.T. (1998). Phosphorus soil testing: innovations for water quality protection. Commun. Soil Sci. Plant Anal., 29, 1471–1478. DOI: 10.1080/00103629809370044.10.1080/00103629809370044Search in Google Scholar

27. Hedley, M. & McLaughlin, M. (2005). Reactions of phosphate fertilizers and by-products in soils. In: J.T. Sims, A.N. Sharpley (Eds), Phosph.: Agric. Environ., Madison, WI: CSSA, SSSA.Search in Google Scholar

28. Chien, S.H., Prochnow, L.I. & Cantarella, H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron., 102, 267–322. DOI: 10.1016/S0065-2113(09)01008-6.10.1016/S0065-2113(09)01008-6Search in Google Scholar

29. Mortvedt, J.J. (1987). Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States. J. Environ. Qual., 16, 137–143. DOI:10.2134/jeq1987.00472425001600020008x.10.2134/jeq1987.00472425001600020008xSearch in Google Scholar

30. Directive 2000/60/EC of the European Parliament and of the Council. (2000). DzU UE L00.327.Search in Google Scholar

31. Directive 91/676/EWG of the European Parliament. (1991).Search in Google Scholar

32. Matson, P.A., Naylor, R., Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic and economic aspects of fertilizer management. Science 280, 112–115. DOI: 10.1126/science.280.5360.112.10.1126/science.280.5360.1129525856Search in Google Scholar

33. Craswell, E.T. & Godwin, D.C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr., 1, 1–9.Search in Google Scholar

34. Roberts, T.L. (2008). Improving nutrient use efficiency. Turk. J. Agric. For., 32, 177–182.Search in Google Scholar

35. Association of American Plant Food Control Officials (AAPFCO). (1997). Official Publication No. 50, T-29. West Lafayette, IN, USA: AAPFCO.Search in Google Scholar

36. Griessbach, R. & Eissner, W. (1926). DE Patent No. 431585. Berlin: DPMA.Search in Google Scholar

37. Rohner, L.V. & Wood, A.P. (1947). US Patent No. 2415705. Washington, D.C.: USPTO.Search in Google Scholar

38. Clapp, J.P. (1991). Properties and uses of liquid ureatriazone-based nitrogen fertilizers Fert. Res. 28, 229–233. DOI: 10.1007/BF01049755.10.1007/BF01049755Search in Google Scholar

39. Jahns, T., Ewen, H. & Kaltwasser, H. (2003). Biodegradability of urea-aldehyde condensation products. J. Polym. Environ. 11(4), 155–159. DOI: 10.1023/A:1026052314695.10.1023/A:1026052314695Search in Google Scholar

40. Koivunen, M.E. & Horwath, W.R. (2004). Effect of management history and temperature on the mineralization of methylene urea in soil. Nutr. Cycling Agroecosyst. 68(1), 25–35. DOI: 10.1023/B:FRES.0000012232.56756.f0.10.1023/B:FRES.0000012232.56756.f0Search in Google Scholar

41. Alexander, A. & Helm, H.U. (1990). Ureaform as a slow release fertiliser: A review. J. Plant Nutr. Soil Sci. 153(4), 249–255. DOI: 10.1002/jpln.19901530410.10.1002/jpln.19901530410Search in Google Scholar

42. Lunt, O.R. & Clark, S.B. (1969). Properties and value of 1,1-diureido isobutane (IBDU) as a long-lasting nitrogen fertilizer. J. Agric. Food Chem., 17(6), 1269–1271. DOI: 10.1021/jf60166a053.10.1021/jf60166a053Search in Google Scholar

43. Jahns, T. & Schepp, R. (2001). Isobutylidenediurea degradation by Rhodococcus erythropolis. Biodegradation 12(5), 317–323. DOI: 10.1023/A:1014335602141.10.1023/A:1014335602141Search in Google Scholar

44. Kikushima, T., Hatano, T. & Takahashi, A. (1970). JP Patent No. 45000874 B4 19700112. Tokyo: JPO.Search in Google Scholar

45. Ushioda, T. (1969). Development and commercial scale of CDU (slow acting fertilizer) technology. Jpn. Chem. Q. 5(4), 27–32.Search in Google Scholar

46. Shimizu, T. (1987). Glycoluril as a slow release nitrogen fertilizer. Soil. Sci. Plant Nutr. 33, 291–298. DOI: 10.1080/00380768.1987.10557574.10.1080/00380768.1987.10557574Search in Google Scholar

47. Okuwaki, A. & Okabe, T. (1991). Development of a new route to oxamide from coal and ammonia, Trends Inorg. Chem. 2, 145–158.Search in Google Scholar

48. Mosdell, D.K., Daniel, W.H. & Freeborg, R.P. (1987). Melamine and ammeline as nitrogen sources for turfgrasses. Fert. Res. 11(1), 79–86. DOI: 10.1007/BF01049566.10.1007/BF01049566Search in Google Scholar

49. Hayase, T. & Kurihara, J. (1972). JP Patent No. 47006377 B4 19720223. Tokyo: JPO.Search in Google Scholar

50. Hepburn, C., Young, S. & Arizal, R. (1987). Rubber matrix for the slow release of urea fertilizer. Am. Chem. Soc., Div. Polym. Chem. 28, 94–96.Search in Google Scholar

51. Hepburn, C. & Arizal, R. (1988). Slow-release fertilizers based on natural rubber. Br. Polym. J. 20(6), 487–491. DOI: 10.1002/pi.4980200605.10.1002/pi.4980200605Search in Google Scholar

52. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 1: The encapsulation of urea fertilizer by rubber: processing and vulcanization procedures, Plast. Rubber Compos. Process. Appl. 12(3), 129–134.Search in Google Scholar

53. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 2: Preparation of the rubber-urea matrix and the split-feeding mixing technique. Plast. Rubber Compos. Process. Appl. 12(3), 135–140.Search in Google Scholar

54. Hepburn, C., Young, S. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 3: Soil leaching and growth trials Plast. Rubber Compos. Process. Appl. 12(3), 141–146.Search in Google Scholar

55. Hassan, Z.A., Young, S.D., Hepburn, C. & Arizal, R. (1990). An evaluation of urea-rubber matrices as slow-release fertilizers. Fert. Res. 22, 63–70. DOI: 10.1007/BF01116180.10.1007/BF01116180Search in Google Scholar

56. Abdel Bary, E.M., El-Shekeil, A.G., Helaly, F.M., Sarhan, A.A. & Abdel Razik, H.H. (1992). Sustained-release natural rubber formulations for urea. Plast. Rubber Compos. Process. Appl. 17(2), 99–107.Search in Google Scholar

57. Helaly, F.M. & Abo-Elela, S.I. (1990). Protection of surface water from eutrophication via controlled release of phosphate fertilizer. J. Control. Rel., 12(1), 39–44. DOI: 10.1016/0168-3659(90)90181-R.10.1016/0168-3659(90)90181-RSearch in Google Scholar

58. Helaly, F.M., Abdel-Bary, E.M., Sarhan, A.A. & Abdel-Razik, H.H. (1993). Minimization of water pollution and environmental problems via controlled-release styrene-butadiene rubber formulations containing ammonium nitrate. Plast. Rubber Compos. Process. Appl. 19(2), 111–115.Search in Google Scholar

59. Helaly, F.M. & Nashar, D.E. (2002). Slow-release rubber formulations containing ZnSO4. Polym. Test. 21(8), 867–875.10.1016/S0142-9418(02)00021-1Search in Google Scholar

60. Abd El-Kader, A.A. & Attia, M. (2006). Nutrients release and biological aspects of butadiene styrene - fertilizer mixtures. Egypt. J. Soil Sci. 46(1), 69–77.Search in Google Scholar

61. Joyce, D.C., Bell, L.C., Asher, C.J. & Edwards, D.G. (1988). Thermoplastic matrix controlled-release zinc fertilizers. I. Laboratory characterization. Fert. Res. 17(3), 235–250. DOI: 10.1007/BF01049580.10.1007/BF01049580Search in Google Scholar

62. Joyce, D.C., Bell, L.C., Edwards, D.G. & Asher, C.J. (1988). Thermoplastic matrix controlled-release zinc fertilizers. II. Effect of soil and formulation characteristics on zinc emission. Fert. Res. 17(3), 251–266. DOI: 10.1007/BF01049581.10.1007/BF01049581Search in Google Scholar

63. Joyce, D.C., Asher, C.J., Edwards, D.G. & Bell, L.C. (1988). Thermoplastic matrix controlled-release zinc fertilizers. III. Zinc nutrition of linseed on a sand and a clay. Fert. Res. 17(3), 267–283. DOI: 10.1007/BF01049582.10.1007/BF01049582Search in Google Scholar

64. Perez, M.G., Rueda, J.I.P, Mateos, F.B. & Marin, J.P. (1999). Slow-release fertilizer in the form of emulsion. Chem. Biochem. Eng. Q. 13(1), 21–26.Search in Google Scholar

65. Lunt, O.R., Kofranek, A.M. & Clark, S.B. (1964). Availability of minerals from magnesium ammonium phosphates J. Agric. Food Chem. 12(6), 497–504. DOI: 10.1021/jf60136a005.10.1021/jf60136a005Search in Google Scholar

66. de-Bashan, L.E. & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res. 38, 4222–4246. DOI:10.1016/j.watres.2004.07.014.10.1016/j.watres.2004.07.01415491670Search in Google Scholar

67. Grzmil, B. & Wronkowski, J. (2004). Processes for removing and recovering phosphates from wastewaters. Chem. Rev. 83(6), 275–280.Search in Google Scholar

68. Matynia, A., Hutnik, N., Piotrowski, K., Wierzbowska, B. & Koralewska, J. (2009). Recovery of phosphate ions by continuous precipitation and crystallization of struvite in DTM type crystallizer with jet pump. Progr. Environ. Sci. Technol. 2, 986–993.Search in Google Scholar

69. Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M. & Ra, C.S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7, 139–155. DOI: 10.1016/j.arabjc.2013.10.007.10.1016/j.arabjc.2013.10.007Search in Google Scholar

70. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Ind. Eng. Chem. Res. 49(5), 2213–2216. DOI: 10.1021/ie901780v.10.1021/ie901780vSearch in Google Scholar

71. Tongamp, W., Zhang, Q. & Saito, F. (2008). Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technol. 185(1), 43–48. DOI: 10.1016/j.powtec.2007.09.013.10.1016/j.powtec.2007.09.013Search in Google Scholar

72. Zhang, Q., Solihin & Saito, F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. J. Amer. Ceram. Soc. 92(12), 3070–3073. DOI: 10.1111/j.1551-2916.2009.03291.x.10.1111/j.1551-2916.2009.03291.xSearch in Google Scholar

73. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer. Powder Technol. 212(2), 354–358. DOI: 10.1016/j.powtec.2011.06.012.10.1016/j.powtec.2011.06.012Search in Google Scholar

74. Yuan, W., Solihin, Zhang, Q., Kano, J. & Saito, F. (2014). Mechanochemical formation of K-Si-Ca-O compound as a slow-release fertilizer. Powder Technol. 260, 22–26. http://dx.doi.org/10.1016/j.powtec.2014.03.072Search in Google Scholar

75. Bolan, N.S., Hedley, M.J. & Loganathan, P. (1993). Preparation, forms and properties of controlled-release phosphate fertilizers. Fert. Res. 35, 13–24. DOI: 10.1007/BF00750216.10.1007/BF00750216Search in Google Scholar

76. Rajan, S.S.S., Watkinson, J.H. & Sinclair, A.G. (1996). Phosphate rock for direct application to soils. Adv. Agron. 57, 77–159. DOI: 10.1016/S0065-2113(08)60923-2.10.1016/S0065-2113(08)60923-2Search in Google Scholar

77. Skut, J., Hoffmann, J., Hoffmann, K. (2011). Evaluation of the progress of sulfuric acid acidulation of phosphate rocks. Przem. Chem. 90(5), 1024-1028.Search in Google Scholar

78. Skut, J., Hoffmann, J. & Hoffmann, K. (2012). Temperature and moisture influence on the curing process of PAPR type fertilizer products. Pol. J. Chem. Technol. 14(3), 77–82. DOI: 10.2748/v10026-012-0106-1.Search in Google Scholar

79. Ando, J. (1987). Thermal phosphates. In: F.T. Nielsson (Ed.), Man. Fert. Proces. New York: Marcel Dekker Inc.Search in Google Scholar

80. Ranawat, P., Kumar, K.M. & Sharma, N.K. (2009). A process for making slow-release phosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Curr. Sci. 96(6), 843–848.Search in Google Scholar

81. Guimond, R.J. & Hardin, J.M. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. Int. J. Radiat. Appl. Instrum. Part C, 34(2), 309–315. DOI: 10.1016/1359-0197(89)90238-5.10.1016/1359-0197(89)90238-5Search in Google Scholar

82. Scholten, L.C. & Timmermans, C.W.M. (1996). Natural radioactivity in phosphate fertilizers. Fert. Res. 43, 103–107. DOI: 10.1007/BF00747688.10.1007/BF00747688Search in Google Scholar

83. Ioannides, K.G., Mertzimekis, T.J., Papachristodoulou, C.A. & Tzialla, C.E. (1997). Measurements of natural radioactivity in phosphate fertilizers. Sci. Total Environ. 196(1), 63–67. DOI: 10.1016/S0048-9697(96)05390-9.10.1016/S0048-9697(96)05390-9Search in Google Scholar

84. Roselli, C., Desideri, D. & Meli, M.A. (2009). Radiological characterization of phosphate fertilizers: Comparison between alpha and gamma spectrometry. Microchem. J. 91(2), 181–186. DOI: 10.1016/j.microc.2008.10.003.10.1016/j.microc.2008.10.003Search in Google Scholar

85. Wacławska, I. & Szumera, M. (2003), Thermal analysis of glasses for proecological applications. J. Thermal Anal. Calorim. 72(3), 1065–1072.10.1023/A:1025059424522Search in Google Scholar

86. Wacławska, I. & Szumera, M. (2009). Reactivity of silicate-phosphate glasses in soil environment. J. Alloys Compd. 468(1–2), 246–253. DOI: 10.1023/A:102505942452210.1023/A:1025059424522Search in Google Scholar

87. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2013). Structural studies of copper-containing multicomponent glasses from the SiO2-P2O5-K2O-CaO-MgO system. Vib. Spectrosc. 65, 44–49. http://dx.doi.org/10.1016/j.vibspec.2012.11.013Search in Google Scholar

88. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2014). Effect of glass composition on the interactions between structural elements in Cu-containing silicate-phosphate glasses. J. Thermal Anal. Calorim. 116(1), 51–59. DOI: 10.1007/s10973-014-3705-7.10.1007/s10973-014-3705-7Search in Google Scholar

89. Mandlule, A., Doehler, F., van Wuellen, L., Kasuga, T. & Brauer, D.S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. Solids 392–393, 31–38. DOI: 10.1016/j.jnoncrysol.2014.04.002.10.1016/j.jnoncrysol.2014.04.002Search in Google Scholar

90. Qiu, Q. & Hlavacek, V. (2010). Energy estimation on CRN process of fly ash as a slow-release nitrogen fertilizer. Ind. Eng. Chem. Res. 49(12), 5939–5944. DOI: 10.1021/ie100391y.10.1021/ie100391ySearch in Google Scholar

91. Virkar, A.N., Misra, S.N., Sharma, N., Ray, H.S. & Paul, A. (1987). Thermal analysis and x-ray diffraction studies on controlled release fertilizers prepared by incorporating nutrients into blast furnace slag. Thermochim. Acta 111, 135–142. DOI: 10.1016/0040-6031(87)88042-5.10.1016/0040-6031(87)88042-5Search in Google Scholar

92. Yao, Y., Hamada, E., Sato, K., Akiyama, T. & Yoneyama, T. (2014). Identification of the major constituents of fused potassium silicate fertilizer. ISIJ Int. 54(4), 990–993. DOI: http://dx.doi.org/10.2355/isijinternational.54.990.Search in Google Scholar

93. Ming, D.W. & Allen, E.R. (2001). Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Rev. Mineral. Geochem. 45, 619–654. DOI: 10.2138/rmg.2001.45.18.10.2138/rmg.2001.45.18Search in Google Scholar

94. Pereira, E.I., Minussi, F.B., da Cruz, C.C.T., Bernardi, A.C.C. & Ribeiro, C. (2012). Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J. Agric. Food Chem. 60(21), 5267–5272. DOI: 10.1021/jp507826j.10.1021/jp507826jSearch in Google Scholar

95. Ray, S.K., Varadachari, Ch. & Ghosh, K. (1993). Novel slow-releasing micronutrient fertilizers. 1. Zinc compounds. Ind. Eng. Chem. Res. 32(6), 1218–1227. DOI: 10.1021/ie00018a030.10.1021/ie00018a030Search in Google Scholar

96. Ray, S.K., Varadachari, Ch. & Ghosh, K. (1997). Novel slow-releasing micronutrient fertilizers. 2. Copper compounds. J. Agric. Food Chem. 45(4), 1447–1453. DOI: 10.1021/jf960499.10.1021/jf960499+Search in Google Scholar

97. Bhattacharya, I., Bandyopadhyay, S., Varadachari, Ch. & Ghosh, K. (2007). Development of a novel slow-releasing iron-manganese fertilizer compound. Ind. Eng. Chem. Res. 46(9), 2870–2876. DOI: 10.1021/ie060787n.10.1021/ie060787nSearch in Google Scholar

98. Bhattacharya, I., Bandyopadhyay, S., Ghosh, K. & Varadachari, Ch. (2008). New slow-releasing molybdenum fertilizer. J. Agric. Food Chem. 56(4), 1343–1349. DOI: 10.1021/jf072878g.10.1021/jf072878g18247562Search in Google Scholar

99. Chandra, P.K., Ghosh, K. & Varadachari, Ch. (2009). A new slow-releasing iron fertilizer. Chem. Eng. J. 155(1–2), 451–456. DOI: 10.1016/j.cej.2009.07.017.10.1016/j.cej.2009.07.017Search in Google Scholar

100. Grzmil, B.U. & Kic, B. (1995). Potassium, sodium and calcium polyphosphates with controlled solubility. J. Agric. Food Chem. 43(9), 2463–2470. DOI: 10.1021/jf00057a028.10.1021/jf00057a028Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering