Acceso abierto

Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell


Cite

1. Ullah, K.R., Akikur, R.K., Ping, H.W., Saidur, R., Hajimolana, S.A. & Hussain, M.A. (2015). An experimental investigation on a single tubular SOFC for renevable energy based cogeneration system, Energy Conversion and Management 94, 139–149. DOI: 10.1016/j.enconman.2015.01.055.10.1016/j.enconman.2015.01.055Search in Google Scholar

2. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane-powered micro-tubular, single chamber solid oxide fuel cell, J. Pow. Sour. 195, 7796–7807. DOI: 10.1016/j.jpowsour.2010.01.084.10.1016/j.jpowsour.2010.01.084Search in Google Scholar

3. Yang, Y., Du, X., Yang, L., Huang, Y. & Xian, H. (2009). Investigation of methane steam reforming in planar porous support of solid oxide fuel cell, Appl. Therm. Eng. 29, 1106–1113. DOI: 10.1016/j.applthermaleng.2008.05.027.10.1016/j.applthermaleng.2008.05.027Search in Google Scholar

4. Hussain, M., Li, X. & Dincer, I. (2009). A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Pow. Sour. 189, 916–928, DOI: 10.1016/j.jpowsour.2008.12.121.10.1016/j.jpowsour.2008.12.121Search in Google Scholar

5. Andersson, M., Yuan, J. & Sunden, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries, Inter. J. Heat Mass. Transfer 55, 773–777. DOI: 10.1016/j.ijheatmasstransfer.2011.10.032.10.1016/j.ijheatmasstransfer.2011.10.032Search in Google Scholar

6. Goldin, G.M., Zhu, H., Kee, R.J., Bierschenk, D., Barnett, S.A. (2009). Multidimensional flow, thermal and chemical behavior in solid oxide fuel cell button cells, J. Pow. Sour. 187, 123–135. DOI: 10.1016/j.jpowsour.2008.10.097.10.1016/j.jpowsour.2008.10.097Search in Google Scholar

7. Shi, J. & Xue, X. (2012). Inverse estimation of electrode microstructure distributions in NASA Bi-electrode supported solid oxide fuel cells, Chem. Eng. J. 182, 607–613. DOI: 10.1016/j.cej.2011.11.112.10.1016/j.cej.2011.11.112Search in Google Scholar

8. Daneshvar, K., Dotelli, G., Cristiani, C., Pelosato, C. & Santarelli, M. (2014). Modelling and parametric study of a single solid oxide fuel cell by Finite Element Method, Fuel Cells. 14, 189–199. DOI: 10.1002/fuce.201300235.10.1002/fuce.201300235Search in Google Scholar

9. Bertrei, A., Nucci, B. & Nicolella, C. (2013). Micro-structural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chem. Eng. Sci. 101, 175–190. DOI: 10.1016/j.ces.2013.06.032.10.1016/j.ces.2013.06.032Search in Google Scholar

10. Brus, G. & Szmyd, J.S. (2008). Numerical modelling of radiative heat transfer in an internal indirect reforming type SOFC, J. Pow. Sour. 181, 8–16. DOI: 10.1149/1.2779314.Search in Google Scholar

11. Zitouni, B., Ben Moussa, H., Oulmi, K., Asighi, S. & Chetehouna, K. (2009). Temperature field, H2 and H2O mass transfer in SOFC single cell: electrode and electrolyte thickness effects, Inter. J. Hydrogen Energ., 34, 5032–5039. DOI: 10.1016/j.ijhydene.2008.12.085.10.1016/j.ijhydene.2008.12.085Search in Google Scholar

12. Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A. & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments, J. Pow. Sour. 242, 405–414. DOI: 10.1016/j.jpowsour.2013.05.020.10.1016/j.jpowsour.2013.05.020Search in Google Scholar

13. Schluckner, C., Subotic, V., Lawlor, V. & Hochenauer, C. (2014). Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fuelled by diesel reformat – Part I: creation of a base model for further carbon deposition modeling, Inter. J. Hydrogen Energ. 39, 19102–19118. DOI: 10.1016/j.ijhydene.2014.09.108.10.1016/j.ijhydene.2014.09.108Search in Google Scholar

14. Yuan, J. (2010). Simulation and analysis of multiscale transport phenomena and catalytic reactions in SOFC anodes, Chem. Prod. Proc. Model 5, 1934–2659. DOI: 10.2202/1934-2659.1450.10.2202/1934-2659.1450Search in Google Scholar

15. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. J. Appl. Energ. 87, 1461–1476. DOI: 10.1016/j.apenergy.2009.1.013.Search in Google Scholar

16. Bi, W.X., Chen, D.F. & Lin, Z.J. (2009). A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks, Int. J. Hydrogen Energ. 34, 3873–3884. DOI: 10.1016/j.ijhydene.2009.02.071.10.1016/j.ijhydene.2009.02.071Search in Google Scholar

17. Cui, D., Liu, L., Dong, Y. & Cheng, M. (2007). Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling J. Pow. Sour. 174, 246–254. DOI: 10.1016/j.powsourc.2007.08.094.Search in Google Scholar

18. Lin, B., Shi, Y., Ni, M. & Cai, N. (2015). Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell units channels, Int. J. Hydrogen Energ. 40, 3035–3047. DOI: 10.1016/j.ijhydene.2014.12.088.10.1016/j.ijhydene.2014.12.088Search in Google Scholar

19. ANSYS Inc. ANSYS Fluent User’s guide, V15.0 (2015).Search in Google Scholar

20. ANSYS Inc. ANSYS Fluent Fuel Cell Modules Manual, V15.0 (2015).Search in Google Scholar

21. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling, Pol. J. Chem. Tech. 16, 2, 51–55. DOI: 10.2478/pjct-2014-0029.10.2478/pjct-2014-0029Search in Google Scholar

22. Bossel, U. (2012). Rapid startup SOFC module, Energ. Proced. 28, 48–56. DOI: 10.1016/j.egypro.2012.08.039.10.1016/j.egypro.2012.08.039Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering