Acceso abierto

Growth rates of common pelagic ciliates in a highly eutrophic lake measured with a modified dilution method


Cite

Agatha, S., Laval-Peuto, M. & Simon, P. (2013). The tintinnid lorica. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 17-41). Chichester: Wiley-Blackwell.AgathaS.Laval-PeutoM.SimonP.2013The tintinnid loricaDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.The biology and ecology of tintinnid ciliates. Models for marine plankton1741ChichesterWiley-Blackwell10.1002/9781118358092.ch2Search in Google Scholar

Bautista-Reyes, F. & Macek, M. (2012). Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater Lake Alchichica, México. FEMS Microbiol. Ecol. 79: 85-97. 10.1111/j.1574-6941.2011.01200.x.Bautista-ReyesF.MacekM.2012Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater Lake Alchichica, MéxicoFEMS Microbiol. Ecol79859710.1111/j.1574-6941.2011.01200.x22066988Open DOISearch in Google Scholar

Berglund, J., Samuelsson, K., Kull, T., Müren, U. & Andersson, A. (2005). Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low-productive sea area. J. Plankton Res. 27: 923-935. 10.1093/plankt/fbi067.BerglundJ.SamuelssonK.KullT.MürenU.AnderssonA.2005Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low-productive sea areaJ. Plankton Res2792393510.1093/plankt/fbi067Open DOISearch in Google Scholar

Biernacka, I. (1952). Studies on the reproduction of some species of the genus Tintinnopsis Stein. Ann. Univ. Mariae Curie-Sklodowska Sect. C 6: 211-247. (In Polish with English abstract).BiernackaI.1952Studies on the reproduction of some species of the genus Tintinnopsis SteinAnn. Univ. Mariae Curie-Sklodowska Sect. C6211247(In Polish with English abstract)Search in Google Scholar

Boenigk, J. & Novarino, G. (2004). Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34: 181-192.BoenigkJ.NovarinoG.2004Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliatesAquat. Microb. Ecol3418119210.3354/ame034181Search in Google Scholar

Børsheim, K.Y. & Bratbak, G. (1987). Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175.BørsheimK.Y.BratbakG.1987Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawaterMar. Ecol. Prog. Ser3617117510.3354/meps036171Search in Google Scholar

Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24: GB4015. 10.1029/2009GB003601.BuitenhuisE.T.RivkinR.B.SailleyS.Le QuéréC.2010Biogeochemical fluxes through microzooplanktonGlobal Biogeochem. Cy24GB401510.1029/2009GB003601Open DOISearch in Google Scholar

Calbet, A. & Saiz, E. (2013). Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J. Plankton Res. 35: 1183-1191. 10.1093/plankt/fbt067.CalbetA.SaizE.2013Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopesJ. Plankton Res351183119110.1093/plankt/fbt067Open DOISearch in Google Scholar

Campbell, A.S. (1926). The cytology of Tintinnopsis nucula (Fol) Laackmann with an account of its neuromotor apparatus, division, and a new intranuclear parasite. Univ. Calif. Publs. Zool. 29: 179-236.CampbellA.S.1926The cytology of Tintinnopsis nucula (Fol) Laackmann with an account of its neuromotor apparatus, division, and a new intranuclear parasiteUniv. Calif. Publs. Zool29179236Search in Google Scholar

Caron, D.A. (1983). Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491-498.CaronD.A.1983Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other proceduresAppl. Environ. Microbiol4649149810.1128/aem.46.2.491-498.198323942816346372Search in Google Scholar

Caron, D.A. & Hutchins, D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235-252. 10.1093/plankt/fbs091.CaronD.A.HutchinsD.A.2013The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gapsJ. Plankton Res3523525210.1093/plankt/fbs091Open DOISearch in Google Scholar

Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174.CarriasJ.-F.ThouvenotA.AmblardC.Sime-NgandoT.2001Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, FranceAquat. Microb. Ecol2416317410.3354/ame024163Search in Google Scholar

Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. 10.1007/s10750-005-4447-0.CarrickH.2005An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study)Hydrobiologia551173210.1007/s10750-005-4447-0Open DOISearch in Google Scholar

Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235.CarrickH.J.FahnenstielG.L.TaylorW.D.1992Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamicsLimnol. Oceanogr371221123510.4319/lo.1992.37.6.1221Search in Google Scholar

Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765.ChoiJ.W.StoeckerD.K.1989Effects of fixation on cell volume of marine planktonic protozoaAppl. Environ. Microbiol551761176510.1128/aem.55.7.1761-1765.198920294716347970Search in Google Scholar

Cleven, E.-J. (2004). Pelagic ciliates in a large mesotrophic lake: seasonal succession and taxon-specific bacterivory in Lake Constance. Internat. Rev. Hydrobiol. 89: 289-304. 10.1002/iroh.200310701.ClevenE.-J.2004Pelagic ciliates in a large mesotrophic lake: seasonal succession and taxon-specific bacterivory in Lake ConstanceInternat. Rev. Hydrobiol8928930410.1002/iroh.200310701Open DOISearch in Google Scholar

Cleven, E.-J. & Königs, S. (2007). Growth of interstitial ciliates in association with ciliate bacterivory in a sandy hyporheic zone. Aquat. Microb. Ecol. 47: 177-189.ClevenE.-J.KönigsS.2007Growth of interstitial ciliates in association with ciliate bacterivory in a sandy hyporheic zoneAquat. Microb. Ecol4717718910.3354/ame047177Search in Google Scholar

Cleven, E.-J. & Weisse, T. (2001). Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147-161.ClevenE.-J.WeisseT.2001Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake ConstanceAquat. Microb. Ecol2314716110.3354/ame023147Search in Google Scholar

Coats, D.W. & Bachvaroff, T.R. (2013). Parasites of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 145-170). Chichester: Wiley-Blackwell.CoatsD.W.BachvaroffT.R.2013Parasites of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.The biology and ecology of tintinnid ciliates. Models for marine plankton145170ChichesterWiley-Blackwell10.1002/9781118358092.ch6Search in Google Scholar

Coats, D.W., Kim, Y.O., Choi, J.M. & Lee, E.S. (2014). Observations on dinoflagellate parasites of aloricate ciliates in Korean coastal waters. Aquat. Microb. Ecol. 72: 89-97. 10.3354/ame01687.CoatsD.W.KimY.O.ChoiJ.M.LeeE.S.2014Observations on dinoflagellate parasites of aloricate ciliates in Korean coastal watersAquat. Microb. Ecol72899710.3354/ame01687Open DOISearch in Google Scholar

Dolan, J.R. (2010). Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensions. Acta Protozool. 49: 235-244.DolanJ.R.2010Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensionsActa Protozool49235244Search in Google Scholar

Dolan, J.R. & Coats, D.W. (1991). A study of feeding in predacious ciliates using prey ciliates labeled with fluorescent microspheres. J. Plankton Res. 13: 609-627.DolanJ.R.CoatsD.W.1991A study of feeding in predacious ciliates using prey ciliates labeled with fluorescent microspheresJ. Plankton Res1360962710.1093/plankt/13.3.609Search in Google Scholar

Dupuy, C., Ryckaert, M., Le Gall, S. & Hartmann, H.J. (2007). Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellates. Microb. Ecol. 53: 537-548. 10.1007/s00248-006-9087-z.DupuyC.RyckaertM.Le GallS.HartmannH.J.2007Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellatesMicrob. Ecol5353754810.1007/s00248-006-9087-z17404788Open DOISearch in Google Scholar

Fenchel, T. (1980). Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13-25.FenchelT.1980Suspension feeding in ciliated protozoa: feeding rates and their ecological significanceMicrob. Ecol6132510.1007/BF0202037124226831Search in Google Scholar

Fenchel, T. (1986). Protozoan filter feeding. Progr. Protistol. 1: 65-113.FenchelT.1986Protozoan filter feedingProgr. Protistol165113Search in Google Scholar

Ficek, D. & Wielgat-Rychert, M. (2009). Spatial distribution and seasonal variation in chlorophyll concentration s in the coastal Lake Gardno (Poland). Oceanol. Hydrobiol. Stud. 38: 3-15. 10.2478/v10009-009-0002-z.FicekD.Wielgat-RychertM.2009Spatial distribution and seasonal variation in chlorophyll concentration s in the coastal Lake Gardno (Poland)Oceanol. Hydrobiol. Stud3831510.2478/v10009-009-0002-zOpen DOISearch in Google Scholar

Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81.FinlayB.J.1977The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoaOecologia (Berl.)30758110.1007/BF0034489328309192Search in Google Scholar

First, M.R., Miller, H.L., Lavrentyev, P.J., Pinckney, J.L. & Burd, A.B. (2009). Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat. Microb. Ecol. 54: 255-267. 10.3354/ame01271.FirstM.R.MillerH.L.LavrentyevP.J.PinckneyJ.L.BurdA.B.2009Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environmentsAquat. Microb. Ecol5425526710.3354/ame01271Open DOISearch in Google Scholar

Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482.FoissnerW.BergerH.1996A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecologyFreshwater Biol3537548210.1111/j.1365-2427.1996.tb01775.xSearch in Google Scholar

Franzé, G. & Lavrentyev, P.J. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9: e86429. 10.1371/journal.pone.0086429.FranzéG.LavrentyevP.J.2014Microzooplankton growth rates examined across a temperature gradient in the Barents SeaPLoS ONE9e8642910.1371/journal.pone.0086429390170924475119Open DOISearch in Google Scholar

Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. 10.1007/s00227-013-2298-1.FranzéG.ModighM.2013Experimental evidence for internal predation in microzooplankton communitiesMar. Biol1603103311210.1007/s00227-013-2298-1Open DOISearch in Google Scholar

Frost, B.W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanuspacificus. Limnol. Oceanogr. 17: 805-815.FrostB.W.1972Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod CalanuspacificusLimnol. Oceanogr1780581510.4319/lo.1972.17.6.0805Search in Google Scholar

Gallegos, C.L. (1989). Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57: 23-33.GallegosC.L.1989Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kineticsMar. Ecol. Prog. Ser57233310.3354/meps057023Search in Google Scholar

Gast, V. (1985). Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22: 107-120.GastV.1985Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliatesMar. Ecol. Prog. Ser2210712010.3354/meps022107Search in Google Scholar

Gismervik, I. (2005). Numerical and functional responses of choreo- and oligotrich planktonic ciliates. Aquat. Microb. Ecol. 40: 163-173.GismervikI.2005Numerical and functional responses of choreo- and oligotrich planktonic ciliatesAquat. Microb. Ecol4016317310.3354/ame040163Search in Google Scholar

Heinbokel, J.F. (1978). Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189.HeinbokelJ.F.1978Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory culturesMar. Biol4717718910.1007/BF00395638Search in Google Scholar

Heinbokel, J.F. & Coats, D.W. (1986). Patterns of tintinnine abundance and reproduction near the edge of seasonal pack-ice in the Weddell Sea, November 1983. Mar. Ecol. Prog. Ser. 33: 71-80.HeinbokelJ.F.CoatsD.W.1986Patterns of tintinnine abundance and reproduction near the edge of seasonal pack-ice in the Weddell Sea, November 1983Mar. Ecol. Prog. Ser33718010.3354/meps033071Search in Google Scholar

Hobbie, J.E., Daley, R.J. & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.HobbieJ.E.DaleyR.J.JasperS.1977Use of nucleopore filters for counting bacteria by epifluorescence microscopyAppl. Environ. Microbiol331225122810.1128/aem.33.5.1225-1228.1977Search in Google Scholar

Jakobsen, H.H. & Strom, S.L. (2004). Circadian cycles in growth and feeding rates of heterotrophic protist plankton. Limnol. Oceanogr. 49: 1915-1922.JakobsenH.H.StromS.L.2004Circadian cycles in growth and feeding rates of heterotrophic protist planktonLimnol. Oceanogr491915192210.4319/lo.2004.49.6.1915Search in Google Scholar

Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equation for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191-194.JeffreyS.W.HumphreyG.F.1975New spectrophotometric equation for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplanktonBiochem. Physiol. Pfl16719119410.1016/S0015-3796(17)30778-3Search in Google Scholar

Jezbera, J., Horňák, K. & Šimek, K. (2005). Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridisation. FEMS Microbiol. Ecol. 52: 351-363. 10.1016/j.femsec.2004.12.001.JezberaJ.HorňákK.ŠimekK.2005Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridisationFEMS Microbiol. Ecol5235136310.1016/j.femsec.2004.12.00116329920Open DOISearch in Google Scholar

Klaas, C., Verity, P.G. & Schultes, S. (2008). Determination of copepod grazing on natural plankton communities: correcting for trophic cascade effects. Mar. Ecol. Prog. Ser. 357: 195-206. 10.3354/meps07262.KlaasC.VerityP.G.SchultesS.2008Determination of copepod grazing on natural plankton communities: correcting for trophic cascade effectsMar. Ecol. Prog. Ser35719520610.3354/meps07262Open DOISearch in Google Scholar

Lai, C.-C., Fu, Y.-W., Liu, H.-B., Kuo, H.-Y., Wang, K.-W. et al. (2014). Distinct bacterial-production-DOC-primary-production relationships and implications for biogenic C cycling in the South China Sea shelf. Biogeosciences 11: 147-156. 10.5194/bg-11-147-2014.LaiC.-C.FuY.-W.LiuH.-B.KuoH.-Y.WangK.-W.et al.2014Distinct bacterial-production-DOC-primary-production relationships and implications for biogenic C cycling in the South China Sea shelfBiogeosciences1114715610.5194/bg-11-147-2014Open DOISearch in Google Scholar

Landry, M.R. & Hassett, R.P. (1982). Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283-288.LandryM.R.HassettR.P.1982Estimating the grazing impact of marine micro-zooplanktonMar. Biol6728328810.1007/BF00397668Search in Google Scholar

Landry, M.R., Haas, L.W. & Fagerness, V.L. (1984). Dynamics of microbial plankton communities: Experiments in Kanoehe, Hawaii. Mar. Ecol. Prog. Ser. 16: 127-133.LandryM.R.HaasL.W.FagernessV.L.1984Dynamics of microbial plankton communities: Experiments in Kanoehe, HawaiiMar. Ecol. Prog. Ser1612713310.3354/meps016127Search in Google Scholar

Lavrentyev, P.J., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Aquat. Ecol. 48: 567-577. 10.1007/s00248-004-0250-0.LavrentyevP.J.McCarthyM.J.KlarerD.M.JochemF.GardnerW.S.2004Estuarine microbial food web patterns in a Lake Erie coastal wetlandAquat. Ecol4856757710.1007/s00248-004-0250-015696390Open DOISearch in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83.LeakeyR.J.G.BurkillP.H.SleighM.A.1992Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flowMar. Biol114678310.1007/BF00350857Search in Google Scholar

Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK 74: 849-861.LeakeyR.J.G.BurkillP.H.SleighM.A.1994Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimatesJ. Mar. Biol. Assoc. UK7484986110.1017/S0025315400090093Search in Google Scholar

Macek, M., Šimek, K., Pernthaler, J., Vyhnálek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18: 463-481.MacekM.ŠimekK.PernthalerJ.VyhnálekV.PsennerR.1996Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degreeJ. Plankton Res1846348110.1093/plankt/18.4.463Search in Google Scholar

McManus, G.B. (1993). Growth rates of natural populations of heterotrophic nanoplankton. In P.F. Kemp, B.F. Sherr, E. B. Sherr, J.J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 557-562). Boca Raton: Levis Publishing.McManusG.B.1993Growth rates of natural populations of heterotrophic nanoplanktonKempP.F.SherrB.F.SherrE. B.ColeJ.J.Handbook of methods in aquatic microbial ecology557562Boca RatonLevis Publishing10.1201/9780203752746-66Search in Google Scholar

McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley-Blackwell.McManusG.B.SantoferraraL.F.2013Tintinnids in microzooplankton communitiesDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.The biology and ecology of tintinnid ciliates. Models for marine plankton198213ChichesterWiley-Blackwell10.1002/9781118358092.ch9Search in Google Scholar

Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. 10.1093/plankt/fbr095.MironovaE.TeleshI.SkarlatoS.2012Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea)J. Plankton Res3420822010.1093/plankt/fbr095Open DOISearch in Google Scholar

Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A. et al. (2014). The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11: 995-1005. 10.5194/bg-11-995-2014.MitraA.FlynnK.J.BurkholderJ.M.BergeT.CalbetA.et al.2014The role of mixotrophic protists in the biological carbon pumpBiogeosciences11995100510.5194/bg-11-995-2014Open DOISearch in Google Scholar

Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254.MontagnesD.J.S.1996Growth responses of planktonic ciliates in the genera Strobilidium and StrombidiumMar. Ecol. Prog. Ser13024125410.3354/meps130241Search in Google Scholar

Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85–121). Chichester: Wiley-Blackwell.MontagnesD.J.S.2013Ecophysiology and behavior of tintinnidsDolanJ.R.MontagnesD.J.S.AgathaS.CoatsD.W.StoeckerD.K.The biology and ecology of tintinnid ciliates. Models for marine plankton85121ChichesterWiley-Blackwell10.1002/9781118358092.ch4Search in Google Scholar

Montagnes, D.J.S., Barbosa, A.B., Boenigk, J., Davidson, K., Jürgens, K. et al. (2008). Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat. Microb. Ecol. 53: 83-98. 10.3354/ame01229.MontagnesD.J.S.BarbosaA.B.BoenigkJ.DavidsonK.JürgensK.et al.2008Selective feeding behaviour of key free-living protists: avenues for continued studyAquat. Microb. Ecol53839810.3354/ame01229Open DOISearch in Google Scholar

Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30.MontagnesD.J.S.LynnD.H.RoffJ.C.TaylorW.D.1988The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic roleMar. Biol99213010.1007/BF00644973Search in Google Scholar

Montagnes, D.J.S., Berges, J.A., Harrison, P.J. & Taylor, F. J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060.MontagnesD.J.S.BergesJ.A.HarrisonP.J.TaylorF. J.R.1994Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplanktonLimnol. Oceanogr391044106010.4319/lo.1994.39.5.1044Search in Google Scholar

Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273.MüllerH.1989The relative importance of different ciliate taxa in the pelagic food web of Lake ConstanceMicrob. Ecol1826127310.1007/BF0207581324196206Search in Google Scholar

Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327.MüllerH.GellerW.1993Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsideredArch. Hydrobiol12631532710.1127/archiv-hydrobiol/126/1993/315Search in Google Scholar

Nielsen, T.G. & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.NielsenT.G.KiørboeT.1994Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. CiliatesLimnol. Oceanogr3950851910.4319/lo.1994.39.3.0508Search in Google Scholar

Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935.OhmanM.D.SnyderR.A.1991Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. LimnolOceanogr3692293510.4319/lo.1991.36.5.0922Search in Google Scholar

Paffenhöfer, G.A., Sherr, B.F. & Sherr, E.B. (2007). From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean. Mar. Ecol. 28: 243-253. 10.1111/j.1439-0485.2007.00162.x.PaffenhöferG.A.SherrB.F.SherrE.B.2007From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic oceanMar. Ecol2824325310.1111/j.1439-0485.2007.00162.xOpen DOISearch in Google Scholar

Peštová, D., Macek, M. & Martínez-Pérez, M.E. (2008) Ciliates and their picophytoplankton-feeding activity in a highaltitude warm-monomictic saline lake. Eur. J. Protistol. 44: 13-25. 10.1016/j.ejop.2007.04.004.PeštováD.MacekM.Martínez-PérezM.E.2008Ciliates and their picophytoplankton-feeding activity in a highaltitude warm-monomictic saline lakeEur. J. Protistol44132510.1016/j.ejop.2007.04.00417931843Open DOISearch in Google Scholar

Posch, T., Jezbera, J., Vrba, J., Šimek, K., Pernthaler, J. et al. (2001). Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation system. Microb. Ecol. 42: 217-227. 10.1007/s002480000114.PoschT.JezberaJ.VrbaJ.ŠimekK.PernthalerJ.et al.2001Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation systemMicrob. Ecol4221722710.1007/s00248000011412024247Open DOISearch in Google Scholar

Pratt, J.R. & Cairns, J.Jr. (1985). Functional groups in the protozoa: roles in dif ering ecosystems. J. Protozool. 32: 415-423.PrattJ.R.CairnsJ.Jr.1985Functional groups in the protozoa: roles in dif ering ecosystemsJ. Protozool3241542310.1111/j.1550-7408.1985.tb04037.xSearch in Google Scholar

Rivier, A., Brownlee, D.C., Sheldon, R.W. & Rassoulzadegan, F. (1985). Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 51-60.RivierA.BrownleeD.C.SheldonR.W.RassoulzadeganF.1985Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliatesMar. Microb. Food Webs15160Search in Google Scholar

Rychert, K. (2011). Dependence between volumes of protoplast and lorica in Lugol-fixed tintinnid ciliates. Protist 162: 249-252. 10.1016/j.protis.2010.05.004.RychertK.2011Dependence between volumes of protoplast and lorica in Lugol-fixed tintinnid ciliatesProtist16224925210.1016/j.protis.2010.05.00420674491Open DOISearch in Google Scholar

Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. 10.1016/j.ejop.2012.08.003.RychertK.2013A modified dilution method reveals higher protozoan growth rates than the size fractionation methodEur. J. Protistol4924925410.1016/j.ejop.2012.08.00322999054Open DOISearch in Google Scholar

Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochynska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish and eutrophic lakes. Pol. J. Ecol. 60: 767-776.RychertK.Wielgat-RychertM.SzczurowskaD.MyszkaM.BochynskaM.et al.2012The importance of ciliates as a trophic link in shallow, brackish and eutrophic lakesPol. J. Ecol60767776Search in Google Scholar

Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. 10.1007/s00300-010-0930-9.SeutheL.IversenK.R.NarcyF.2011Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellatesPolar Biol3475176610.1007/s00300-010-0930-9Open DOISearch in Google Scholar

Šimek, K., Bobková, J., Macek, M., Nedoma, J. & Psenner, R. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077-1090.ŠimekK.BobkováJ.MacekM.NedomaJ.PsennerR.1995Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community levelLimnol. Oceanogr401077109010.4319/lo.1995.40.6.1077Search in Google Scholar

Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207.SonntagB.PoschT.KlammerS.TeubnerK.PsennerR.2006Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depthsAquat. Microb. Ecol4319320710.3354/ame043193Search in Google Scholar

Stocker, R. (2012). Marine microbes see a sea of gradients. Science 338: 628-633. 10.1126/science.1208929.StockerR.2012Marine microbes see a sea of gradientsScience33862863310.1126/science.120892923118182Open DOISearch in Google Scholar

Taylor, W.D. (1978). Maximum growth rate, size and commonness in a community of bactivorous ciliates. Oecologia (Berl.) 36: 263-272.TaylorW.D.1978Maximum growth rate, size and commonness in a community of bactivorous ciliatesOecologia (Berl.)3626327210.1007/BF0034805228309913Search in Google Scholar

Trojanowski, J. & Antonowicz, J. (2011). Heavy metals in surface microlayer in water of Lake Gardno. Arch. Environ. Prot. 37: 75-88.TrojanowskiJ.AntonowiczJ.2011Heavy metals in surface microlayer in water of Lake GardnoArch. Environ. Prot377588Search in Google Scholar

Turley, C.M., Newell, R.C. & Robins, D.B. (1986). Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59-70.TurleyC.M.NewellR.C.RobinsD.B.1986Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditionsMar. Ecol. Prog. Ser33597010.3354/meps033059Search in Google Scholar

Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9: 1-38. (In German).UtermöhlH.1958Improving quantitative methods for phytoplankton analysesMitt. Int. Ver. Limnol9138(In German)10.1080/05384680.1958.11904091Search in Google Scholar

Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126.VerityP.G.1986Growth rates of natural tintinnid populations in Narragansett BayMar. Ecol. Prog. Ser2911712610.3354/meps029117Search in Google Scholar

Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-867.VerityP.G.LangdonC.1984Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett BayJ. Plankton Res685986710.1093/plankt/6.5.859Search in Google Scholar

Wallberg, P., Jonsson P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185.WallbergP.JonssonP.R.JohnstoneR.1999Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystemAquat. Microb. Ecol1817518510.3354/ame018175Search in Google Scholar

Weisse, T., Karstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179.WeisseT.KarstensN.MeyerV.C.L.JankeL.LettnerS.et al.2001Niche separation in common prostome freshwater ciliates: the effect of food and temperatureAquat. Microb. Ecol2616717910.3354/ame026167Search in Google Scholar

Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455.WeisseT.StadlerP.LindströmE.S.KimmanceS.A.MontagnesD.J.S.2002Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farctaLimnol. Oceanogr471447145510.4319/lo.2002.47.5.1447Search in Google Scholar

Wiackowski, K., Doniec, A. & Fyda, J. (1994). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69.WiackowskiK.DoniecA.FydaJ.1994An empirical study of the effect of fixation on ciliate cell volumeMar. Microb. Food Webs85969Search in Google Scholar

Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57. 10.1023/A:1017592019513.WiackowskiK.VenteläA.-M.MoilanenM.SaarikariV.VuorioK.et al.2001What factors control planktonic ciliates during summer in a highly eutrophic lake?Hydrobiologia443435710.1023/A:1017592019513Open DOISearch in Google Scholar

Wielgat-Rychert, M., Rychert, K. & Ficek, D. (2010). Factors controlling pelagic production and respiration in a shallow polymictic lake. Pol. J. Ecol. 58: 379-385.Wielgat-RychertM.RychertK.FicekD.2010Factors controlling pelagic production and respiration in a shallow polymictic lakePol. J. Ecol58379385Search in Google Scholar

Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. (2015). Nutrient fluxes and their impact on the phytoplankton in a shallow coastal lake. Pol. J. Environ. Stud. 24: 751-759. DOI: 1015244/pjoes/30925.Wielgat-RychertM.JarosiewiczA.FicekD.PawlikM.RychertK.2015Nutrient fluxes and their impact on the phytoplankton in a shallow coastal lakePol. J. Environ. Stud247517591015244/pjoes/30925Open DOISearch in Google Scholar

eISSN:
1897-3191
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, other, Geosciences, Life Sciences