1. bookVolumen 63 (2018): Edición 1 (March 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1508-5791
Primera edición
25 Mar 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

On the role of LET-dependent parameters in the determination of the absorbed dose by in-phantom recombination chambers

Publicado en línea: 01 Mar 2018
Volumen & Edición: Volumen 63 (2018) - Edición 1 (March 2018)
Páginas: 9 - 15
Recibido: 14 Dec 2016
Aceptado: 15 Dec 2017
Detalles de la revista
License
Formato
Revista
eISSN
1508-5791
Primera edición
25 Mar 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Zielczyński, M. (1962). Use of columnar recombination for determination of relative biological effi ciency of radiation. Nukleonika, 7, 175-182 (in Russian).Search in Google Scholar

2. Zielczyński, M. (1963). Recombination method for determination of linear energy transfer of mixed radiation. In Symposium on Neutron Detection, Dosimetry, and Standardization, 10-14 December 1962 (pp. 397-404). Vienna, Austria: International Atomic Energy Agency.Search in Google Scholar

3. Sullivan, A. H., & Baarli, J. (1963). An ionization chamber for the estimation of the biological effectiveness of radiation. Geneva, Switzerland: CERN. (Report 63-17).Search in Google Scholar

4. Zielczyński, M., Golnik, N., Makarewicz, M., & Sullivan, A. H. (1981). Defi nition of radiation quality by initial recombination of ions. In 7th Symposium on Microdosimetry, 8-12 September 1980 (pp. 853-862). Oxford, United Kingdom: Harwood Academic Publishers.Search in Google Scholar

5. Zielczyński, M., & Golnik, N. (1994). Recombination index of radiation quality - measuring and applications. Radiat. Prot. Dosim., 52, 419-422.10.1093/oxfordjournals.rpd.a082226Abierto DOISearch in Google Scholar

6. Golnik, N. (1995). Microdosimetry using a recombination chamber: Method and applications. Radiat. Prot. Dosim., 61(1/3), 125-128.10.1093/oxfordjournals.rpd.a082766Search in Google Scholar

7. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation. Swierk, Poland: Institute of Atomic Energy. (Report IAE-20/A).Search in Google Scholar

8. Zielczyński, M., & Golnik, N. (1994). Energy expended to create an ion pair as a factor dependent on radiation quality. In International Symposium on Measurement Assurance in Dosimetry, 24-27 May 1993 (pp. 383-391). Vienna, Austria: International Atomic Energy Agency.Search in Google Scholar

9. Silari, M., Agosteo, S., Beck, P., Bedogni, R., Cale, E., Caresana, M., Domingo, C., Donadille, L., Dubourg, N., Esposito, A., Fehrenbacher, G., Fernandez, F., Ferrarini, M., Fiechter, A., Fuchs, A., Garcia, M.J., Golnik, N., Gutermuth, F., Khurana, S., Klages, Th., Latocha, M., Mares, V., Mayer, S., Radon, T., Reithmeier, H., Rollet, S., Roos, H., Ruhm, W., Sandri, S., Schardt, D., Simmer, G., Spurny, F., Trompier, F., Villa-Grasa, E., Weitzenegger, E., Wiegel, B., Wielunski, M., Wissmann, F., Zechner, A., & Zielczynski, M. (2009). Intercomparison of radiation protection devices in a high-energy stray neutron fi eld. Part III: Instrument response. Radiat. Meas., 44(7/8), 673-691. DOI: 10.1016/j.radmeas.2009.05.005.10.1016/j.radmeas.2009.05.005Abierto DOISearch in Google Scholar

10. Caresana, M., Denker, A., Esposito, A., Ferrarini, M., Golnik, N., Hohmann, E., Leuschner, A., Luszik-Bhadra, M., Manessi, G., Mayer, S., Ott, K., Roehrich, J., Silari, M., Trompier, F., Volnhals, M., & Wielunski, M. (2014). Intercomparison of radiation protection instrumentation in a pulsed neutron fi eld. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 203-213. DOI: 10.1016/j.nima.2013.11.073.10.1016/j.nima.2013.11.073Abierto DOISearch in Google Scholar

11. Miljanic, S., Bordy, J. -M., d’Errico, F., Harrison, R., & Olko, P. (2014). Out-of-fi eld dose measurements in radiotherapy - An overview of activity of EURADOS Working Group 9: Radiation protection in medicine. Radiat. Meas., 71, 270-275. DOI: 10.1016/j.radmeas.2014.04.026.10.1016/j.radmeas.2014.04.026Abierto DOISearch in Google Scholar

12. Kaderka, R., Schardt, D., Durante, M., Berger, T., Ramm, U., Licher, J., & La Tessa, C. (2012). Outof- field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol., 57(16), 5059-5074. DOI: 10.1088/0031- 9155/57/16/5059.10.1088/0031-9155/57/16/505922836598Abierto DOISearch in Google Scholar

13. Hälg, R. A., Besserer, J., Boschung, M., Mayer, S., Lomax, A. J., & Schneider, U. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy. Phys. Med. Biol., 59(10), 2457-2468. DOI: 10.1088/0031-9155/59/10/2457.10.1088/0031-9155/59/10/245724778349Search in Google Scholar

14. Sanchez-Doblado, F., Domingo, C., Gomez, F., Sánchez-Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito, M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, N., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares, J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2012). Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector. Phys. Med. Biol., 57(19), 6167-6191. DOI: 10.1088/0031-9155/57/19/6167.10.1088/0031-9155/57/19/616722971664Abierto DOISearch in Google Scholar

15. Irazola, L., Lorenzoli, M., Bedogni, R., Pola, A., Terron, J. A., Sanchez-Nieto, B., Exposito, M. R., Lageras, J. I., Sansaloni, F., & Sanchez-Doblado, F. (2014). A new online detector for estimation of peripheral neutron equivalent dose in organ. Med. Phys., 41(11), art. no. 112105. DOI: 10.1118/1.4898591.10.1118/1.489859125370656Search in Google Scholar

16. Haelg, R. A., Besserer, J., Boschung, M., Sánchez- Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito, M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, L., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares, J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment. Phys. Med. Biol., 59(10), 2457-2468. DOI: 10.1088/0031-9155/59/10/2457.10.1088/0031-9155/59/10/2457Search in Google Scholar

17. Di Fulvio, A., Domingo, C., De San Pedro, M., D’Agostino, E., Caresana, M., Tana, L., & d’Errico, F. (2013). Superheated emulsions and track etch detectors for photoneutron measurements. Radiat. Meas., 57, 19-28. DOI: 10.1016/j.radmeas.2013.11.004.10.1016/j.radmeas.2013.11.004Abierto DOISearch in Google Scholar

18. Konefal, A., Orlef, A., & Bieniasiewicz, M. (2016). Measurements of neutron radiation and induced radioactivity for the new medical linear accelerator, the Varian TrueBeam. Radiat. Meas., 86, 8-15. DOI: 10.1016/j.radmeas.2015.12.039.10.1016/j.radmeas.2015.12.039Abierto DOISearch in Google Scholar

19. Kowalik, A., Jackowiak, W., Malicki, J., Skórska, M., Adamczyk, M., Konstanty, E., Piotrowski, T., & Polaczek-Grelik, K. (2017). Measurements of doses from photon beam irradiation and scattered neutrons in an anthropomorphic phantom model of prostate cancer: a comparison between 3DCRT, IMRT and tomotherapy. Nukleonika, 62(1), 29-35. DOI: 10.1515/ nuka-2017-0005.10.1515/nuka-2017-0005Abierto DOISearch in Google Scholar

20. Romero-Exposito, M., Domingo, C., Sanchez-Doblado, F., Ortega-Gelabert, O., & Gallego, S. (2016). Experimental evaluation of neutron dose in radiotherapy patients: Which dose? Med. Phys., 43(1), 360-367. DOI: 10.1118/1.4938578.10.1118/1.493857826745929Abierto DOISearch in Google Scholar

21. Particle Therapy Co-Operative Group (July, 2017). Particle Therapy Centers. Retrieved August 08, 2017, from https://www.ptcog.ch/index.php/facilities-inoperation, https://www.ptcog.ch/index.php/facilitiesunder-construction.Search in Google Scholar

22. IFJ Cyclotron Centre Bronowice. (2015). Cyclotron Centre Bronowice. Retrieved August 08, 2017, from https://ccb.ifj.edu.pl/en.home.html.Search in Google Scholar

23. Brenner, D. J., & Hatt, E. J. (2008). Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol., 86(2), 165-170. DOI: 10.1016/j.radonc.10.1016/j.radoncAbierto DOISearch in Google Scholar

24. Farah, J., Mares, V., Romero-Exposito, M., Trinkl, S., Domingo, C., Dufek, V., Klodowska, M., Kubancak, J., Knezevic, Z., Liszka, M., Majer, M., Miljanic, S., Ploc, O., Schinner, K., Stolarczyk, L., Trompier, F., Wielunski, M., Olko, P., & Harrison, R. M. (2015). Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med. Phys., 42(5), 2572-2584. DOI: 10.1118/1.4916667.10.1118/1.491666725979049Abierto DOISearch in Google Scholar

25. Schneider, U., & Haelg, R. (2015). The impact of neutrons in clinical proton therapy. Frontiers in Oncology, 5, art. no. 235. DOI: 10.3389/fonc.2015.00235.10.3389/fonc.2015.00235461710426557501Abierto DOISearch in Google Scholar

26. Kumada, H., Matsumura, A., Sakurai, H., Sakae, T., Yoshioka, M., Kobayashi, H., Matsumoto, H., Kiyanagi, Y., Shibata, T., & Nakashima, H. (2014). Project for the development of the linac based NCT facility in University of Tsukuba. Appl. Radiat. Isot., 88, 211-215. DOI: 10.1016/j.apradiso.2014.02.018.10.1016/j.apradiso.2014.02.01824637084Abierto DOISearch in Google Scholar

27. Takada, K., Kumada, H., Isobe, T., Terunuma, T., Kamizawa, S., Sakurai, H., Sakae, T., & Matsumura, A. (2015). Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy. Radiat. Prot. Dosim., 167(4), 584-590. DOI: 10.1093/rpd/ncu357.10.1093/rpd/ncu35725520378Abierto DOISearch in Google Scholar

28. Durisi, E., Alikaniotis, K., Borla, O., Bragato, F., Costa, M., Giannini, G., Monti, V., Visca, L., Vivaldo, G., & Zanini, A. (2015). Design and simulation of an optimized e-linac based neutron source for BNCT research. Appl. Radiat. Isot., 106, 63-67. DOI: 10.1016/j.apradiso.2015.07.039.10.1016/j.apradiso.2015.07.03926315098Abierto DOISearch in Google Scholar

29. Miyatake, S. I., Kawabata, S., Hiramatsu, R., Kuroiwa, T., Suzuki, M., Kondo, N., & Ono, K. (2016). Boron neutron capture therapy for malignant brain tumors. Neurol. Med. Chir., 56(7), 361-371. DOI: 10.2176/nmc.ra.2015-0297.10.2176/nmc.ra.2015-0297494559427250576Abierto DOISearch in Google Scholar

30. Zielczyński, M., Komochkov, M. M., Sychev, B. S., & Cherevatenko, A. P. (1968). Measurements of the quality factor for high energy protons in the water phantom. Nukleonika, 13(2), 165-170.Search in Google Scholar

31. Golnik, N., Cherevatenko, E. P., Serov, A. Y., Shvidkij, S. V., Sychev, B. S., & Zielczyński, M. (1997). Recombination index of radiation quality of medical high energy neutron beams. Radiat. Prot. Dosim., 70(1/4), 215-218.10.1093/oxfordjournals.rpd.a031947Search in Google Scholar

32. Golnik, N., Zielczyński, M., Bulski, W., Tulik, P., & Pałko, T. (2007). Measurements of the neutron dose near a 15 MV medical linear accelerator. Radiat. Prot. Dosim., 126(1/4), 619-622. DOI: 10.1093/rpd/ncm125.10.1093/rpd/ncm12517513292Abierto DOISearch in Google Scholar

33. Golnik, N., Gryziński, M. A., Kowalska, M., Meronka, K., & Tulik, P. (2014). Characterization of radiation fi eld for irradiation of biological samples at nuclear reactor - comparison of twin detector and recombination methods. Radiat. Prot. Dosim., 161(1/4), 196-200. DOI: 10.1093/rpd/nct341.10.1093/rpd/nct34124366246Abierto DOISearch in Google Scholar

34. Spencer, L. V., & Attix, F. H. (1955). A theory of cavity ionization. Radiat. Res., 3(3), 239-254.10.2307/3570326Search in Google Scholar

35. Nahum, A. E. (1978). Water/air mass stopping power ratios for megavoltage photon and electron beams. Phys. Med. Biol., 23, 24-38.10.1088/0031-9155/23/1/002416446Abierto DOISearch in Google Scholar

36. Spencer, L. V. (1971). Remarks on the theory of energy deposition in cavities. Acta Radiol. Ther. Phys. Biol., 10(1), 1-20.10.3109/028418671091297415549335Abierto DOISearch in Google Scholar

37. Zielczyński, M. (1988). Technique of determining dose in medical beams of high energy particles. Dubna, Russia: JINR. (JINR Commun. R16-88-531). (in Russian).Search in Google Scholar

38. Golnik, N., & Zielczyński, M. (1997). Dosimetry of neutron beams with energy of hundreds of MeV. In International Conference Neutrons in Research and Industry, June 9, 1996 (pp. 254-263). Crete, Greece: International Society for Optics and Photonics SPIE.Search in Google Scholar

39. Zielczyński, M., & Golnik, N. (1999). Dosimetry of TRIGA reactor fi elds using high pressure ionization chambers. Świerk, Poland: Institute of Atomic Energy. (Report IAE-61/A).Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo