Cite

1. Arántegui, R. L., Corsatea, T., & Suomalainen, K. (2012). 2012 JRC wind status report. Petten: Joint Research Centre. (Report EUR 25647 EN).Search in Google Scholar

2. Fingersh, L., Hand, M., & Laxson, A. (2006). Wind turbine design cost and scaling model. Golden: National Renewable Energy Laboratory. (Technical Report NREL/TP-500-40566).10.2172/897434Search in Google Scholar

3. Greco, A., Sheng, S., Keller, J., & Erdemir, A. (2013). Material wear and fatigue in wind turbine systems. Wear, 302, 1583-1591. DOI: 10.1016/j.wear.2013.01.060.10.1016/j.wear.2013.01.060Search in Google Scholar

4. Herrmann, J., Rauert, T., Dalhoff, P., & Sander, M. (2016). Fatigue and fracture mechanical behaviour of a wind turbine rotor shaft made of cast iron and forged steel. Procedia Structural Integrity, 2, 2951-2958. DOI: 10.1016/j.prostr.2016.06.369.10.1016/j.prostr.2016.06.369Search in Google Scholar

5. Zhang, Z., Yin, Z., Han, T., & Tan, A. C. C. (2013). Fracture analysis of wind turbine main shaft. Eng. Fail. Anal., 34, 129-139. DOI: 10.1016/j.engfailanal.2013.07.014.10.1016/j.engfailanal.2013.07.014Search in Google Scholar

6. Harada, H., Mikami, T., Shibata, M., Sokai, D., Yamamoto, A., & Tsubakino, H. (2005). Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel. ISIJ Int., 45(12), 1897-1902. DOI: 10.2355/isijinternational.45.1897.10.2355/isijinternational.45.1897Search in Google Scholar

7. Carroll, R. I., & Beynon, J. H. (2007). Rolling contact fatigue of white etching layer: part 1. Crack morphology. Wear, 262, 1253-1266. DOI: 10.1016/j.wear.2007.01.003.10.1016/j.wear.2007.01.003Search in Google Scholar

8. Madge, J. J., Leen, S. B., McColl, I. R., & Shipway, P. H. (2007). Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude. Wear, 262, 1159-1170. DOI: 10.1016/j.wear.2006.11.004.10.1016/j.wear.2006.11.004Search in Google Scholar

9. Huth, R. E. (2008, February). Vertical wind turbine shaft design trade study. Retrieved September, 23, 2016, from <http://www3.nd.edu/~me463c18/Trade%20Studies/TSHuth.pdf>. Search in Google Scholar

10. Bała, P., Krawczyk, J., Hanc, A., & Dercz, G. (2010). The Mössbauer spectroscopy and X-ray diffraction studies of phase transformation during tempering in high-carbon tool steel. Solid State Phenom., 163, 200-203. DOI: 10.4028/www.scientific.net/SSP.163.200.10.4028/www.scientific.net/SSP.163.200Search in Google Scholar

11. Min, N., Li, W., Li, H., & Jin, X. (2010). Atom probe and Mössbauer spectroscopy investigations of cementite dissolution in a cold drawn eutectoid steel. J. Mater. Sci. Technol., 26(9), 776-782. DOI: 10.1016/S1005-0302(10)60123-5.10.1016/S1005-0302(10)60123-5Search in Google Scholar

12. Güler, E., & Akta, H. (2006). Mössbauer studies on an AISI 1137 type steel. Bull. Mat. Sci., 29(3), 303-306. DOI: 10.1007/BF02706500.10.1007/BF02706500Search in Google Scholar

13. Górka, B., Budzynowski, T. W., & Brzózka, K. (2013). Structure of the superfi cial region and mechanical properties of nitrided cast steels. Nukleonika, 58(1), 117-121.Search in Google Scholar

14. Simon, G., Vasconcellos, M. A. Z., & dos Santos, C. A. (1998). Effects of argon irradiation on a plasmanitrided carbon steel. Surf. Coat. Technol., 102, 90-96. DOI: 10.1016/S0257-8972(97)00691-9.10.1016/S0257-8972(97)00691-9Search in Google Scholar

15. Oh, S. J., Cook, D. C., & Townsend, H. E. (1998). Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfi ne Interact., 112, 59-65. DOI: 10.1023/A:1011076308501.10.1023/A:1011076308501Search in Google Scholar

16. Brzózka, K., Żurowski, W., & Górka, B. (2013). Structure of friction products and the surface of tribological system elements. Nukleonika, 58(1), 99-103.Search in Google Scholar

17. Konieczny, R., & Idczak, R. (2015). Atomic shortrange order in mechanically synthesized iron based Fe-Zn alloys studied by 57Fe Mössbauer spectroscopy. Nukleonika, 60(1), 69-73. DOI: 10.1515/nuka-2015-0017.10.1515/nuka-2015-0017Search in Google Scholar

18. Konieczny, R., Idczak, R., & Chojcan, J. (2015). Interactions between osmium atoms dissolved in iron observed by the 57Fe Mössbauer spectroscopy. Nukleonika, 60(1), 75-79. DOI: 10.1515/nuka-2015-0016.10.1515/nuka-2015-0016Search in Google Scholar

19. Szumiata, T., Brzózka, K., Gawroński, M., Górka, B., Javed, A., Morley, N. A., & Gibbs, M. R. J. (2011). Structural and magnetic ordering in Fe-Ga thin fi lms examined by Mössbauer spectrometry. Acta Phys. Pol. A, 119, 21-23. DOI: 10.12693/APhysPolA.119.21.10.12693/APhysPolA.119.21Search in Google Scholar

20. Herranz, T., Rojas, S., Pérez-Alonso, F. J., Ojeda, M., Terreros, P., & Fierro, J. L. G. (2006). Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J. Catal., 243, 199-211. DOI: 10.1016/j.jcat.2006.07.012.10.1016/j.jcat.2006.07.012Search in Google Scholar

21. Bała, P., Krawczyk, J., & Hanc, A. (2008). The Mössbauer spectroscopy studies of ε to cementite carbides transformation during isothermal heating from as-quenched state of high carbon tool steel. Acta Phys. Pol. A, 114, 1641-1650. DOI: 10.12693/APhysPolA.114.1641.10.12693/APhysPolA.114.1641Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other