Acceso abierto

Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration


Cite

1. Amrute, P., Larrazábal, G. O., & Mondelli, C. (2013). CuCrO2 delafossite: A stable copper catalyst for chlorine production. Angew. Chem. Int. Ed., 52, 1-5. DOI: 10.1002/anie.201304254.10.1002/anie.20130425423788244Search in Google Scholar

2. Durham, J. L., Kirshenbaum, K., Takeuchi, E. S., Marschilok, A. C., & Takeuchi, K. J. (2015). Synthetic control of composition and crystallite size of silver ferrite composites: profound electrochemistry impacts. Chem. Commun., 51, 5120-5123. DOI: 10.1039/c4cc10277k.10.1039/C4CC10277K25714656Search in Google Scholar

3. Elsayed, I. A., Çavas, M., Gupta, R., Fahmy, T., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2015). Photoconducting and photocapacitance properties of Al/p-CuNiO2-on-p-Si isotype heterojunction photodiode. J. Alloy. Compd., 638, 166-171. DOI: <http://dx.doi.org/10.1016/j.jallcom.2015.02.212>. Search in Google Scholar

4. Liu, Y., Gong, Y., Mellott, N. P., Wang, B., Ye, H., & Wu, Y. (2016) Luminescence of delafossite-type CuAlO2 fi bers with Eu substitution for Al cations. Sci. Technol. Adv. Mater., 17, 200-209. DOI: 10.1080/14686996.2016.1172024.10.1080/14686996.2016.1172024510203827877870Search in Google Scholar

5. Sun, H., Yazdi, M. A. P., Sanchette, F., & Billard, A., (2016). Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings. J. Phys. D-Appl. Phys., 49, 185105(1-10). DOI: 10.1088/0022-3727/49/18/185105.10.1088/0022-3727/49/18/185105Search in Google Scholar

6. Tripathi, T. S., Niemelä, J. -P., & Karppinen, M. (2015). Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin fi lms. J. Mater. Chem. C, 3, 8364-8371. DOI: 10.1039/c5tc01384d.10.1039/C5TC01384DSearch in Google Scholar

7. Yu, M., Draskovic, T. I., & Wu, Y. (2016). Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Phys. Chem. Chem. Phys., 16, 5026-5033. DOI: 10.1039/c3cp55457k.10.1039/c3cp55457k24477758Search in Google Scholar

8. Amrute, A. A., Łodziana, Z., Mondelli, C., Krumeich, F., & Perez-Ramirez, J. (2013). Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects. Chem. Matter., 25, 4423-4435. DOI: 10.1021/cm402902m.10.1021/cm402902mSearch in Google Scholar

9. Prewitt, C. T., Shannon, R. D., & Rogers, D. B. (1971). Chemistry of noble metal oxides. II. Crystal structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2. Inorg. Chem., 10, 719-723. DOI: 10.1021/ic50098a012.10.1021/ic50098a012Search in Google Scholar

10. Sheets, W. C., Mugnier, E., Barnabé, A., Marks, T. J., & Poeppelmeier, K. R. (2006). Hydrothermal synthesis of delafossitetype oxides. Chem. Mater., 18, 7-20. DOI: 10.1021/cm051791c.10.1021/cm051791cSearch in Google Scholar

11. Marquardt, M. M., Ashmore, N. A., & Cann, D. P. (2006). Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films, 496, 146-156. DOI: 10.1016/j.tsf.2005.08.316.10.1016/j.tsf.2005.08.316Search in Google Scholar

12. Krause, A., & Gawryck, S. (1938). Amorphe und kristallisierte Oxydhydrate und Oxyde. XLIV. Die Umwandlung des röntgenographisch amorphen Eisen III-hydroxyds in γ-Fe2O3. Z. Anorg. Allg. Chem., 238, 406-412. DOI: 10.1002/zaac.19382380409.10.1002/zaac.19382380409Search in Google Scholar

13. Krause, V. A., & Lewandowski, A. (1972). Bildung von Silberferriten aus Silberoxid- und Eisen(III) hydroxidGelen in wäßrigem Medium. Z. Anorg. Allg. Chem., 389(1), 71-74. DOI: 10.1002/zaac.19723890109.10.1002/zaac.19723890109Search in Google Scholar

14. Shannon, R. D., Rogers, D. B., & Prewitt, C. T. (1971). Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem., 10, 713-719. DOI: 10.1021/ic50098a011.10.1021/ic50098a011Search in Google Scholar

15. Presniakov, I. A., Rusakov, V. S., Sobolev, A. V., Gapochka, A. M., Matsnev, M. E., & Belik, A. A. (2014). 57Fe Mössbauer study of new multiferroic AgFeO2. Hyperfine Interact., 226, 41-50. DOI: 10.1007/s10751-013-0948-9.10.1007/s10751-013-0948-9Search in Google Scholar

16. Rusakov, V. S., Presniakov, I. A., Sobolev, A. V., Gapochka, A. M., Matsnev, M. E., & Belik, A. A. (2013). Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei. JEPT Lett+, 98, 544-550. DOI: 10.1134/S0021364013220098.10.1134/S0021364013220098Search in Google Scholar

17. Terada, N., Khalyavin, D. D., Manuel, P., Tsujimoto, Y., & Belik, A. A. (2015). Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes. Phys. Rev. B, 91, 094434(17). DOI: <http://dx.doi.org/10.1103/PhysRevB.91.094434>. Search in Google Scholar

18. Terada, N., Khalyavin, D. D., Manuel, P., Tsujimoto, Y., Knight, K., Radaelli, P. G., Suzuki, H. S., & Kitazawa, H. (2012). Spiral-spin-driven ferroelectricity in a multiferroic delafossite AgFeO2. Phys. Rev. Lett., 109, 097203(5pp.). DOI: http://dx.doi.org/10.1103/PhysRevLett.109.097203.10.1103/PhysRevLett.109.097203Search in Google Scholar

19. Vasiliev, A., Volkova, O., Presniakov, I. A., Baranov, A., Demazeau, G., Broto, J. -M., Millot, M., Lepts, N., Klingeler, R., Büchner, B., Stone, M. B., & Zheludev, A. (2010). Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2. J. Phys.-Condens. Matter, 22, 016007(6pp.). DOI: 10.1088/0953-8984/22/1/016007.10.1088/0953-8984/22/1/016007Search in Google Scholar

20. Gong, H., Wang, Y., & Luo, Y. (2000). Nanocrystalline p-type transparent Cu-Al-O semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. Appl. Phys. Lett., 76, 3959-3961. DOI: <http://dx.doi.org/10.1063/1.126834>. Search in Google Scholar

21. Tsuboi, N., Takahashi, Y., Kobayashi, S., Shimizu, H., Kato, K., & Kaneko, F. (2003). Delafossite CuAlO2 fi lms prepared by reactive sputtering using Cu and Al targets. J. Phys. Chem. Solids, 64, 1671-1674. DOI: 10.1016/S0022-3697(03)00194-X.10.1016/S0022-3697(03)00194-XSearch in Google Scholar

22. Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., & Hosono, H. (2000). Chemical design and thin film preparation of p-type conductive transparent oxides. J. Electroceram., 4, 407-414. DOI: 10.1023/A:1009959920435.10.1023/A:1009959920435Search in Google Scholar

23. Chonco, Z. H., Ferreira, A., Loyda, L., Claeys, M., & Van Steen, E. (2013). Comparing silver and cooper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound. J. Catal., 307, 283-294. DOI: http://dx.doi.org/10.1016/j.jcat.2013.08.005.10.1016/j.jcat.2013.08.005Search in Google Scholar

24. Farley, K. E., Marschilok, A. C., Takeuchi, E. S., & Takeuchi, K. J. (2012). Synthesis and electrochemistry of silver ferrite. Electrochem. Solid State, 15(2), A23-A27. DOI: 10.1149/2.010202esl.10.1149/2.010202eslSearch in Google Scholar

25. Krehula, S., & Musić, S. (2013). Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3-AgNO3 solutions at high pH. J. Mol. Struct., 1044, 221-230. DOI: <http://dx.doi.org/10.1016/j.molstruc.2012.11.012>. Search in Google Scholar

26. Murthy, Y. L. N., Kondala Rao, T., Kasiviswanath, I. V., & Singh, R. (2010). Synthesis and characterization of nano silver ferrite composite. J. Magn. Magn. Mater., 322, 2071-2074. DOI: 10.1016/j.jmmm.2010.01.036.10.1016/j.jmmm.2010.01.036Search in Google Scholar

27. Nagarajan, R., & Tomar, N. (2009). Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J. Solid State Chem., 182, 1283-1290. DOI: 10.1016/j.jssc.2009.01.043.10.1016/j.jssc.2009.01.043Search in Google Scholar

28. Wang, X., Shi, Z., Yao, S., Liao, F., Ding, J., & Shao, M. (2014). Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties. J. Solid State Chem., 219, 228-231. DOI: <http://dx.doi.org/10.1016/j.jssc.2014.07.024>. Search in Google Scholar

29. Cornell, R. M., & Schwertmann, U. (1996). The iron oxides. Structure, properties, reactions, occurrence and uses. Weinheim: Wiley-Verlag Chemie.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other