Acceso abierto

Electron beam irradiation of r-SANEX and i-SANEX solvent extraction systems: analysis of gaseous products


Cite

1. Rydberg, J., Cox, M., Musikas, C., Choppin, G. R. (Eds.). (2004). Solvent extraction principles and practice. 2nd ed., revised and expanded. New York: Marcel Dekker.Search in Google Scholar

2. Hill, C. (2009). Overview of recent advances in An(III)/ Ln(III) separation by solvent extraction. In B. A. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-194). CRC Press.10.1201/9781420059700-c3Search in Google Scholar

3. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236. DOI: 10.1021/cr3003399.10.1021/cr300339923360356Search in Google Scholar

4. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444. DOI: 10.1080/07366299.2012.671111.10.1080/07366299.2012.671111Search in Google Scholar

5. Wilden, A., Schreinemachers, C., Sypula, M., & Modolo, G. (2011). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Solvent Extr. Ion Exch., 29, 190-212. DOI: 10.1080/07366299.2011.539122.10.1080/07366299.2011.539122Search in Google Scholar

6. Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., & Hudson, M. J. (2006). 6,6ʹ-bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro- benzo[1,2,4]triazin-3-yl)[2,2ʹ]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exch., 24, 463-483. DOI: 10.1080/07366290600761936.10.1080/07366290600761936Search in Google Scholar

7. Spinks, J. W. T., & Woods, R. J. (1976). An introduction to radiation chemistry. New York: Wiley.Search in Google Scholar

8. Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., Hatter, J. E., Healey, M. J. F., Hodgson, B., Lewin, R., Lovell, K. V., Newton, B., Pitner, W. R., Rooney, D. W., Sanders, D., Seddon, K. R., Sims, H. E., & Thied, R. C. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chemistry, 4, 152-158. DOI: 10.1039/B111042j.10.1039/b111042jSearch in Google Scholar

9. Cheng, Y. -S., Zhou, Y., Chow, J., Watson, J., & Frazier, C. (2001). Chemical composition of aerosols from kerosene heaters burning jet fuels. Aerosol Sci. Technol., 35, 949-957. DOI: 10.1080/027868201753306714.10.1080/027868201753306714Search in Google Scholar

10. Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A review of household uses and their hazards in low- and middle-income countries. J. Toxicol. Environ. Health Part B, 15, 396-432. DOI: 10.1080/10937404.2012.710134.10.1080/10937404.2012.710134366401422934567Search in Google Scholar

11. Spasov, G. M., Gerasimov, M. M., Siryuk, A. G., & Zimina, K. I. (1967). Chemical composition of kerosene- gas-oil fractions of the Bulgarian crudes. Chem. Technol. Fuels Oils, 3, 556-560. DOI: 10.1007/ bf00729941.10.1007/BF00729941Search in Google Scholar

12. Dewhurst, H. A. (1957). Radiation chemistry of organic compounds. 1. N-alkane liquids. J. Phys. Chem., 61, 1466-1471. DOI: 10.1021/J150557a004.10.1021/j150557a004Search in Google Scholar

13. Swallow, A. J. (1960). Radiation chemistry of organic compounds. Oxford: Pergamon Press.Search in Google Scholar

14. Kharasch, M. S., Chang, P. C., & Wagner, C. D. (1958). Radiolysis of 1-hexene. J. Org. Chem., 23, 779-780. DOI: 10.1021/Jo01099a628.10.1021/jo01099a628Search in Google Scholar

15. LaVerne, J. A., & Schuler, R. H. (1984). Track effects in radiation chemistry: Core processes in heavy- -particle tracks as manifest by the H2 yield in benzene radiolysis. J. Phys. Chem., 88(6), 1200-1205. DOI: 10.1021/J150650a037.10.1021/j150650a037Search in Google Scholar

16. Jones, K. H., Van Dusen Jr, W., & Theard, L. M. (1964). Intermolecular and intramolecular energy transfer in gamma-irradiated alkylbenzenes and related mixtures. Radiat. Res., 232, 128-134.10.2307/3571685Search in Google Scholar

17. Schoepfle, C. S., & Fellows, C. H. (1931). Gaseous products from action of cathode rays on hydrocarbons. Ind. Eng. Chem., 23, 1396-1398. DOI: 10.1021/ ie50264a020.10.1021/ie50264a020Search in Google Scholar

18. Manion, J. P., & Burton, M. (1952). Radiolysis of hydrocarbon mixtures. J. Phys. Chem., 56, 560-569. DOI: 10.1021/J150497a005.10.1021/j150497a005Search in Google Scholar

19. Mcdonell, W. R., & Newton, A. S. (1954). The radiation chemistry of the aliphatic alcohols. J. Am. Chem. Soc., 76, 4651-4658. DOI: 10.1021/Ja01647a051.10.1021/ja01647a051Search in Google Scholar

20. Dewhurst, H. A. (1958). Radiation chemistry of organic compounds. 3. Branched chain alkanes. J. Am. Chem. Soc., 80, 5607-5610. DOI: 10.1021/Ja01554a006.10.1021/ja01554a006Search in Google Scholar

21. Geist, A. (2010). Extraction of nitric acid into alcohol: Kerosene mixtures. Solvent Extr. Ion Exch., 28, 596-607. DOI: 10.1080/07366299.2010.499286.10.1080/07366299.2010.499286Search in Google Scholar

22. Nagaishi, R. (2001). A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem., 60, 369-375. DOI: 10.1016/S0969-806x(00)00410-2.10.1016/S0969-806X(00)00410-2Search in Google Scholar

23. Katsumura, Y. (1998). NO2 and NO3 radicals in the radiolysis of nitric acid solutions. In Z. B. Alfassi (Ed.), The chemistry of free radicals: N-centered radicals (pp. 393-412). Chichester: John Wiley & Sons.Search in Google Scholar

24. Garrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A., Miller, J. H., Rescigno, T. N., Rossky, P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P. F., Bartels, D. M., Becker, K. H., Bowen Jr, K. H., Bradforth, S. E., Carmichael, I., Coe, J. V., Corrales, L. R., Cowin, J. P., Dupuis, M., Eisenthal, K. B., Franz, J. A., Gutowski, M. S., Jordan, K. D., Kay, B. D., Laverne, J. A., Lymar, S. V., Madey, T. E., McCurdy, C. W., Meisel, D., Mukamel, S., Nilsson, A. R., Orlando, T. M., Petrik, N. G., Pimblott, S. M., Rustad, J. R., Schenter, G. K., Singer, S. J., Tokmakoff, A., Wang, L. S., Wettig, C., & Zwier, T. S. (2005). Role of water in electron-initiated processes and radical chemistry: issues and scientifi c advances. Chem. Rev., 105(1), 355-390. DOI: 10.1021/cr030453x.10.1021/cr030453x15720157Search in Google Scholar

25. Burns, W. G., & Moore, P. B. (1976). Water radiolysis and its effect upon in-reactor zircaloy corrosion. Radiat. Eff. Defects Solids, 30(4), 233-242. DOI: 10.1080/00337577608240827.10.1080/00337577608240827Search in Google Scholar

26. Elliot, A. J., Chenier, M. P., & Ouellette, D. C. (1990). G-values for gamma-irradiated water as a function of temperature. Can. J. Chem., 68(5), 712-719. DOI: 10.1139/V90-111.10.1139/v90-111Search in Google Scholar

27. Kanjana, K., Haygarth, K. S., Wu, W., & Bartels, D. M. (2013). Laboratory studies in search of the critical hydrogen concentration. Radiat. Phys. Chem., 82, 25-34. DOI: 10.1016/j.radphyschem.2012.09.011.10.1016/j.radphyschem.2012.09.011Search in Google Scholar

28. von Sonntag, C. (2006). Free-radical-induced DNA damage and its repair. Berlin-Heidelberg: Springer.10.1007/3-540-30592-0Search in Google Scholar

29. Basson, R. A., & van der Linde, H. J. (1967). Polarity effects in radiolysis of n-alcohols. J. Chem. Soc. A, 1, 28-32. DOI: 10.1039/J19670000028.10.1039/j19670000028Search in Google Scholar

30. Katsumura, Y., Sunaryo, G., Hiroishi, D., & Ishigure, K. (1998). Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog. Nucl. Energy, 32(1/2), 113-121. DOI: 10.1016/S0149-1970(97)00011-5.10.1016/S0149-1970(97)00011-5Search in Google Scholar

31. Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A., & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind., 13(3/5), 327-340. DOI: 10.1016/ S0950-4230(99)00037-6.10.1016/S0950-4230(99)00037-6Search in Google Scholar

32. Holmstedt, G. S. (1971). The upper limit of fl ammability of hydrogen in air, oxygen, and oxygen-inert mixtures at elevated pressures. Combust. Flame, 17(3), 295-301. DOI: 10.1016/S0010-2180(71)80051-2.10.1016/S0010-2180(71)80051-2Search in Google Scholar

33. Wierzba, I., & Kilchyk, V. (2001). Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures. Int. J. Hydrogen Energy, 26(6), 639-643. DOI: 10.1016/S0360-3199(00)00114-2.10.1016/S0360-3199(00)00114-2Search in Google Scholar

34. Zabetakis, M. G. (1965). Flammability characteristics of combustible gases and vapors. Washington D.C.: U.S. Department of Interior, Bureau of Mines.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other