Acceso abierto

Numerical simulations of generation of high-energy ion beams driven by a petawatt femtosecond laser


Cite

1. Borghesi, M., Fuchs, J., Bulanov, S. V., MacKinnon, A. J., Patel, P. K., & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol., 49, 412 [and references therein].10.13182/FST06-A1159Search in Google Scholar

2. Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev., 15, 1. DOI: 10.2478/s11772-006-0048-3 [and references therein].10.2478/s11772-006-0048-3Search in Google Scholar

3. Ledingham, K. W. D., & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys., 12, 045005. DOI:10.1088/1367-2630/12/4/045005.10.1088/1367-2630/12/4/045005Search in Google Scholar

4. Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A., & Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542. DOI: 10.1063/1.1333697.10.1063/1.1333697Search in Google Scholar

5. Zani, A., Sgattoni, A., & Passoni, M. (2011). Parametric investigations of target normal sheath acceleration experiments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 653, 94–97.10.1016/j.nima.2011.01.074Search in Google Scholar

6. Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401. DOI: 10.1088/0034-4885/75/5/056401.10.1088/0034-4885/75/5/056401Search in Google Scholar

7. Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751.10.1103/RevModPhys.85.751Search in Google Scholar

8. Passoni, M., Bertagna, L., & Zani, L. (2010). Target normal sheath acceleration: theory, comparison with experiments and future perspectives. New J. Phys., 12, 045012.10.1088/1367-2630/12/4/045012Search in Google Scholar

9. Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G., & Tajima, T. (2004). Highly efficient relativisticion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003. DOI: 10.1103/PhysRev-Lett.92.175003.Search in Google Scholar

10. Macchi, A., Cattani, F., Liseykina, T. V., & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett., 94, 165003. DOI: 10.1103/PhysRevLett.94.165003.10.1103/PhysRevLett.94.165003Search in Google Scholar

11. Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K., & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser–plasma interactions. Phys. Lett. A, 315, 452. DOI: 10.1016/S0375-9601(03)01101-0.10.1016/S0375-9601(03)01101-0Search in Google Scholar

12. Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J., & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys., 104, 063310. DOI: 10.1063/1.2981199.10.1063/1.2981199Search in Google Scholar

13. Badziak, J., Mishra, G., Gupta, N. K., & Holkundkar, A. R. (2011). Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications. Phys. Plasmas, 18, 053108. DOI: 10.1063/1.3590856.10.1063/1.3590856Search in Google Scholar

14. Liseykina, T. V., & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett., 91, 171502. DOI: 10.1063/1.2803318.10.1063/1.2803318Search in Google Scholar

15. Klimo, O., Psikal, J., Limpouch, J., & Tikhonchuk, V. T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Spect. Top.-Accel. Beams, 11, 031301.10.1103/PhysRevSTAB.11.031301Search in Google Scholar

16. Domański, J., Badziak, J., & Jabłoński, S. (2013). Effect of laser light polarization on generation of relativistic ion beams driven by an ultraintense laser. J. Appl. Phys., 113, 173302.10.1063/1.4803709Search in Google Scholar

17. Foord, M. E., Mackinnon, A. J., Patel, P. K., MacPhee, A. G., Ping, Y., Tabak, M., & Town, R. P. J. (2008). Enhanced proton production from hydride-coated foils. J. Appl. Phys., 103, 056106.10.1063/1.2837889Search in Google Scholar

18. Domański, J., Badziak, J., & Jabłoński, S. (2014). Particle-in-cell simulation of acceleration of ions to GeV energies in the interactions of an ultra-intense laser pulse with two-species targets. Phys. Scripta, T161, 014030.10.1088/0031-8949/2014/T161/014030Search in Google Scholar

19. www.americanelements.com/erhid.html.Search in Google Scholar

20. Badziak, J., & Jabłonski, S. (2010). Ultraintense ion beams driven by a short-wavelength short-pulse laser. Phys. Plasmas, 17, 073106. DOI: 10.1063/1.3458900.10.1063/1.3458900Search in Google Scholar

21. Lichters, R., Pfund, R. E. W., & Meyer-Ter-Vehn, J. (1997). LPIC++, A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. Garching: Max-Planck-Institut für Quantenoptik. (MPQ 225). www.lichters.net/download.html.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other