1. bookVolumen 18 (2018): Edición 1 (February 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
access type Acceso abierto

Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

Publicado en línea: 07 Mar 2018
Volumen & Edición: Volumen 18 (2018) - Edición 1 (February 2018)
Páginas: 35 - 40
Recibido: 15 Nov 2017
Aceptado: 20 Feb 2018
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Abstract

Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor–sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

Keywords

[1] Fiala, P., Friedl, M., Hobst, L., Komarkova, T. (2014). Method of evaluating distribution, density and orientation of ferromagnetic electrically conducting fibers within composite material and detection device for making the same. Czech Patent Application PV2014-742.Search in Google Scholar

[2] Wang, W., Dai, Y., Zhang, C., Gao, X., Zhao, M. (2016). Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution. Materials, 9 (8), E624.10.3390/ma9080624550904228773744Search in Google Scholar

[3] Giasin, K., Ayvar-Soberanis, S. (2016). Evaluation of workpiece temperature during drilling of GLARE fiber metal laminates using infrared techniques: Effect of cutting parameters, fiber orientation and spray mist application. Materials, 9 (8), E622.10.3390/ma9080622550904028773757Search in Google Scholar

[4] Zou, S., Wan, Z., Lu, L., Tang, Y. (2016). Experimental study on tensile properties of a novel porous metal fiber/powder sintered composite sheet. Materials, 9 (9), E712.10.3390/ma9090712545708528773833Search in Google Scholar

[5] Mizukami, K., Mizutani, Y., Kimura, K., Sato, A., Todoroki, A., Suzuki, Y. (2016). Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method. Composites Part A: Applied Science and Manufacturing, 82, 108-118.10.1016/j.compositesa.2015.11.040Search in Google Scholar

[6] Zheng, K., Chang, Y.S., Wang, K.H., Yao, Y. (2016). Thermographic clustering analysis for defect detection in CFRP structures. Polymer Testing, 49, 73-81.10.1016/j.polymertesting.2015.11.009Search in Google Scholar

[7] Santoro, S., Drioli, E., Figoli, A. (2016). Development of novel ECTFE coated PP composite hollow-fiber membranes. Coating, 6 (3), 40.10.3390/coatings6030040Search in Google Scholar

[8] Martinie, L., Roussel, N. (2011). Simple tools for fiber orientation prediction in industrial practice. Cement and Concrete Research, 41 (10), 993-1000.10.1016/j.cemconres.2011.05.008Search in Google Scholar

[9] Shah, A.A., Ribakov, Y. (2011). Recent trends in steel fibered high-strength concrete. Materials and Design, 32 (8-9), 4122-4151.10.1016/j.matdes.2011.03.030Abierto DOISearch in Google Scholar

[10] Ozyurt, N., Mason, T.O., Shah, S.P. (2006). Nondestructive monitoring of fiber orientation using ACIS: An industrial-scale application. Cement and Concrete Research, 36 (9), 1653-1660.10.1016/j.cemconres.2006.05.026Search in Google Scholar

[11] Szymanik, B., Frankowski, P.K., Chady, T., Azariah, C.R., Szczecin, J.C. (2015). Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current. Sensors, 16 (2), 234.Search in Google Scholar

[12] Hobst, L., Bílek, P., Vodička, J., Vala, J. (2014). Measurement of set fibre-concrete homogeneity in finished steel fibre-concrete structure of segmental tunnel lining. Advanced Materials Research, 1106, 41-44.10.4028/www.scientific.net/AMR.1106.41Search in Google Scholar

[13] Fiala, P., Friedl, M., Hobst, L., Komarkova, T. (2015). A method and a detection device for evaluating the distribution, density and orientation of ferromagnetic, electrically conductive fibres in a composite material. International Patent Application PCT/CZ2015/000132, publ. no. WO 2016070859 A1.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo