Acceso abierto

Deriving Rain Threshold for Early Warning Based on a Coupled Hydrological-Hydraulic Model


Cite

[1] Ravazzani, G., Mancini, M., Giudici, I., & Amadio, P. (2007). Effects of soil moisture parameterization on a real-time flood forecasting system based on rainfall thresholds. Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management (Proceedings of Symposium HS2004 at IUGG2007, Perugia, July 2007). IAHS Publ. 313, 407-415Search in Google Scholar

[2] Douinot, A., Roux, H., Garambois, P., Larnier, K., Labat, D., & Dartus, D. (2015). Accounting for rainfall systematic spatial variability in flash flood forecasting. J. Hydrol., http://dx.doi.org/10.1016/j.jhydrol.2015.08.024.10.1016/j.jhydrol.2015.08.024Search in Google Scholar

[3] Garambois, P., Roux, H., Larnier, K., Labat, D., & Dartus, D. (2015). Parameter regionalization for a process-oriented distributed model dedicated to flash floods. J. Hydrol., http://dx.doi.org/10.1016/j.jhydrol.2015.03.052 (525), 383-399.10.1016/j.jhydrol.2015.03.052Search in Google Scholar

[4] Adamovic, M., Branger, F., Braud, I., & Kralisch, S. (2016). Development of a data-driven semi-distributed hydrological model for regional scale catchments prone to Mediterranean flash floods. J. Hydrol., http://dx.doi.org/10.1016/j.jhydrol.2016.03.032.10.1016/j.jhydrol.2016.03.032Search in Google Scholar

[5] Miao, Q., Yang, D., Yang, H., & Li, Z. (2016). Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model. J. Hydrol., http://dx.doi.org/10.1016/j.jhydrol.2016.04.054.10.1016/j.jhydrol.2016.04.054Search in Google Scholar

[6] Vannier, O., Anquetin, S., & Braud, I. (2016). Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding. J. Hydrol., http://dx.doi.org/10.1016/j.jhydrol.2016.04.001.10.1016/j.jhydrol.2016.04.001Search in Google Scholar

[7] Glade, E., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical antecedent daily rainfall model. Pure Appl. Geophys., doi:10.1007/s000240050017, 157, 1059-1079.10.1007/s000240050017Search in Google Scholar

[8] Aristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., & Guerra, A. (2011). Analysis of empirical rainfall thresholds for the prognosis of lanslides in the Aburrá Valley, Colombia,. Revista Escuela de Ingeniería de Antioquia, 8, 95-111.Search in Google Scholar

[9] Iverson, R. (2000). Landslide triggering by rain infiltration. Water Resour. Res., doi:10.1029/2000WR900090, 36, 1897–1970.10.1029/2000WR900090Search in Google Scholar

[10] Costa, G., & Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci., doi:10.5194/nhess-3-81-2003, 3, 81-93.10.5194/nhess-3-81-2003Search in Google Scholar

[11] Xevi, E., Christiaens, K., Espino, A., Sewnandan, W., Mallants, D., Sorensen, S., et al. (1997). Calibration, Validation and Sensitivity Analysis of the MIKE-SHE Model Using the Neuenkirchen Catchment as Case Study. Water Resources Management, 11, 219-242.10.1023/A:1007977521604Search in Google Scholar

[12] Thompson, J., Sørenson, H., Gavin, H., & Refsgaard, A. (2004). Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. J. Hydrol., doi:10.1016/j.jhydrol.2004.01.017, 293, 151-179.10.1016/j.jhydrol.2004.01.017Search in Google Scholar

[13] DHI. (2008). MIKE SHE User Manual.Search in Google Scholar

[14] Zhang, Z., Wang, S., Sun, G., McNulty, S., Zhang, H., Li, J., et al. (2008). Evaluation of the MIKE SHE model for application in the Loess Plateau, China. JAWRA, 44, 1108-1120.Search in Google Scholar

[15] Drobot, R. (2007). Metodologia de determinare a bazinelor hidrografice torențiale în care se află așezări umane expuse pericolului viiturilor rapide. Bucharest.Search in Google Scholar

[16] Santos, M., & Fragoso, M. (2016). Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal). Geophysical Research Abstracts, 18.Search in Google Scholar

[17] Jang, J. (2015). An Advanced Method to Apply Multiple Rainfall Thresholds for Urban Flood Warnings. Water, doi:10.3390/w7116056 (7), 6056-6078.10.3390/w7116056Search in Google Scholar

[18] Krause, P., Boyle, D., & Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. (5), 89-97.10.5194/adgeo-5-89-2005Search in Google Scholar

[19] Primăria Buzoești. (2015). Primăria Buzoești. Retrieved 2015, from http://www.primariabuzoesti.ro/pagina/cadrul-fizico-geograficSearch in Google Scholar

[20] Georgakakos, K. (2005). Analytical results for operational flash flood guidance. 317, 81-103.Search in Google Scholar

[21] Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides, doi:10.1007/s10346-007-0112-1, 5, 3-17.10.1007/s10346-007-0112-1Search in Google Scholar

[22] Staley, D., Gartner, J., & Kean, J. (2015). Objective Definition of Rainfall Intensity-Duration Thresholds for Post-fire Flash Floods and Debris Flows in the Area Burned by the Waldo Canyon Fire, Colorado, USA. Engineering Geology for Society and Territory, DOI: 10.1007/978-3-319-09057-3_103, 2, 621-624.10.1007/978-3-319-09057-3_103Search in Google Scholar

eISSN:
2066-6934
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other