Cite

About Titanium Dioxide, Titanium Dioxide Manufacturers Association. http://www.tdma.info (10.03.2015).Search in Google Scholar

Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., & Nowack, B. (2013). Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Science: Processes & Impacts, 15(12), 2186-2193. DOI: 10.1039/c3em00331k.10.1039/c3em00331kSearch in Google Scholar

Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J., & Bottero J.-Y. (2010). Structural Degradation at the Surface of a TiO2-Based Nanomaterial used in Cosmetics. Environmental Science and Technology, 44, 2689-2694. DOI: 10.1021/es903757q.10.1021/es903757qSearch in Google Scholar

Banfield, J. F., & Navrotsky, A. (Eds.), 2001. Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44, 349p.10.2138/rmg.2001.44.0Search in Google Scholar

Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., & Yin L, (2010). An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality, 39:1-12. DOI:10.2134/jeq2009.0479.10.2134/jeq2009.0479Search in Google Scholar

BéruBé, K., Balharry, D., Sexton, K., Koshy, L., & Jones T. (2007). Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology, 34, 1044-1050. DOI: 10.1111/j.1440-1681.2007.04733.x.10.1111/j.1440-1681.2007.04733.xSearch in Google Scholar

Bottero, J.-Y., Auffan, M., Rose, J., Mouneyrac, C., Botta, C., Labille, J., Masion, A., Thill, A., & Chaneac C. (2011). Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus Geoscience, 343, 168-176. DOI: 10.1016/j.crte.2011.01.001.10.1016/j.crte.2011.01.001Search in Google Scholar

Brayner, R. (2008). The toxicological impact of nanoparticles. Nanotoday, 3, 48-55.10.1016/S1748-0132(08)70015-XSearch in Google Scholar

Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29, 2587-2595. DOI: 10.1016/j.wasman.2009.04.001.10.1016/j.wasman.2009.04.00119427190Search in Google Scholar

Cardinale, B. J., Bier, R., & Kwan C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticles Research, 14, 913. DOI: 10.1007/s11051-012-0913-6.10.1007/s11051-012-0913-6Search in Google Scholar

Chang, X., Zhang, Yu., Tang, M., & Wang, B. (2013). Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. Nanoscale Research Letters, 8, 51. DOI: 10.1186/1556-276X-8-51.10.1186/1556-276X-8-51359949823351429Search in Google Scholar

Chen, E. Y., Garnica, M., Wang, Y.-C., Mintz, A. J., Chen, C.-S., & Chin, W.-C. (2012). A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology, 9, 2. DOI: 10.1186/1743-8977-9-2.10.1186/1743-8977-9-2Search in Google Scholar

Chen, W., Qian, C., Liu, X.-Y., & Yu, H.-Q. (2014). Two-Dimensional Correlation Spectroscopic Analysis on the Interaction between Humic Acids and TiO2 Nanoparticles. Environmental Science and Technology, 48, 11119-11126. DOI: 10.1021/es502502n.10.1021/es502502nSearch in Google Scholar

Christian, P., von der Kammer, F., Baalousha, M., & Hofmann, Th. (2008). Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology, 17, 326-343. DOI: 10.1007/s10646-008-0213-1.10.1007/s10646-008-0213-1Search in Google Scholar

Dawson, N. G. (2008). Sweating the small stuff: Environmental risk and nanotechnology. BioScience, 58, 690. DOI: 10.1641/B580805.10.1641/B580805Search in Google Scholar

Du, W., Sun, Y., Ji, R., Zhu, J., Wub, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822-828. DOI: 10.1039/c0em00611d.10.1039/c0em00611dSearch in Google Scholar

Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., & Knowland J. (1997). Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Letters 418, 87-90.10.1016/S0014-5793(97)01356-2Search in Google Scholar

Dwivedi, A. D., & Ma, L. Q. (2014). Biocatalytic synthesis pathways, transformation, and toxicity of nanoparticles in the environment. Critical Reviews in Environmental Science and Technology, 44, 1679-1739. DOI: 10.1080/10643389.2013.790747.10.1080/10643389.2013.790747Search in Google Scholar

Elsaesser, A., & Howard C. V. (2012). Toxicology of nanoparticles. Advanced Drug Delivery Reviews, 64, 129-137. DOI: 10.1016/j.addr.2011.09.001.10.1016/j.addr.2011.09.00121925220Search in Google Scholar

Fadeel, B., & Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62, 362-374. DOI: 10.1016/j.addr.2009.11.008.10.1016/j.addr.2009.11.00819900497Search in Google Scholar

Fukuhara, N., Suzuki, K., Takeda, K., & Nihei Y. (2008). Characterization of environmental nanoparticles. Applied Surface Science, 255, 1538-1540. DOI: 10.1016/j.apsusc.2008.05.013.10.1016/j.apsusc.2008.05.013Search in Google Scholar

Gázquez, M. J., Bolívar, J. P., Garcia-Tenorio, R., & Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 5, 441-458. DOI: 10.4236/msa.2014.57048.10.4236/msa.2014.57048Search in Google Scholar

Ge, Y., Schime, l J. P., & Holden, P. A. (2011). Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science and Technology, 45, 1659-1664. DOI: 10.1021/es103040t.10.1021/es103040t21207975Search in Google Scholar

Geiser, M., Stoeger, T., Casaulta, M., Chen, S., Semmler-Behnke, M., Bolle, I., Takenaka, S., Kreyling, W. G., & Schulz, H. (2014). Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology, 24, 11-19. DOI: 10.1186/1743-8977-11-19.10.1186/1743-8977-11-19400849024758489Search in Google Scholar

Göhler, D., Stintz, M., Hillemann L., & Vorbau, M. (2010). Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Annals of Occupational Hygiene, 54(6), 615-624. DOI: 10.1093/annhyg/meq053.10.1093/annhyg/meq053291849220696941Search in Google Scholar

Grassian, V. H., O’Shaughnessy, P., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397-402. DOI: 10.1289/ehp.9469.10.1289/ehp.9469184991517431489Search in Google Scholar

Grupa Azoty, Tytanpol, 2015. http://tytanpol.com/ (10.03.2015).Search in Google Scholar

Handy, R. D., Owen, R., & Valsami-Jones E. (2008a). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315-325. DOI: 10.1007/s10646-008-0206-0.10.1007/s10646-008-0206-018408994Search in Google Scholar

Handy, R. D., Henry, T. B., Scown, T. M., Johnston, B. D., & Tyler, C. R. (2008b). Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17, 396-409. DOI: 10.1007/s10646-008-0205-1.10.1007/s10646-008-0205-118408995Search in Google Scholar

Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K., & Telling, J. (2013). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 5 (3929), 1-8. DOI: 10.1038/ncomms4929.10.1038/ncomms4929405026224845560Search in Google Scholar

Hochella, M. F. (2008). Nanogeoscience: From origins to cutting-edge applications. Elements, 4(6), 373-379. DOI: 10.2113/gselements.4.6.373.10.2113/gselements.4.6.373Search in Google Scholar

Hochella, M. F., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral manoparticles, and Earth systems. Science, 319, 1631-1635. DOI: 10.1126/science.1141134.10.1126/science.114113418356515Search in Google Scholar

Hu, Y.-L., & Gao, J.-Q. (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics, 394, 115-121. DOI: 10.1016/j.ijpharm.2010.04.026.10.1016/j.ijpharm.2010.04.02620433914Search in Google Scholar

Hu, X., Chen, Q., Jiang, L., Yu, Z., Jiang, D., & Yin, D. (2011). Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environmental Pollution, 159, 1151-1158. DOI: 10.1016/j.envpol.2011.02.011.10.1016/j.envpol.2011.02.01121376439Search in Google Scholar

Jabłońska, M. (2003). Skład fazowy pyłów atmosferycznych w wybranych miejscowościach Górnośląskiego Okręgu Przemysłowego [Phase composition of atmospheric dust from selected cities of the Upper Silesia Industrial Region]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 2151. Katowice: Wydawnictwa Uniwersytetu Śląskiego.Search in Google Scholar

Jabłońska, M. (2013). Wskaźnikowe składniki mineralne w tkance płucnej osób narażonych na pyłowe zanieczyszczenia powietrza w konurbacji katowickiej [Indicative mineral components in lung tissue of persons exposed to aerosol atmospheric contaminations in the Katowice Conurbation]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 3046. Katowice: Wydawnictwo Uniwersytetu Śląskiego.Search in Google Scholar

Jabłońska, M., Janeczek, J., & Rietmeijer F. J. M. (2003). Seasonal changes in the mineral composition of tropospheric dust in the industrial region of Upper Silesia, Poland. Mineralogical Magazine, 67(6), 1231-1241. DOI: 10.1180/0026461036760161.10.1180/0026461036760161Search in Google Scholar

Jovanović, B., & Guzmán, H. M. (2014). Effects of titanium dioxide (TiO2) nanoparticles on Caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33, 1346-1353. DOI: 10.1002/etc.2560.10.1002/etc.256024677278Search in Google Scholar

Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., & Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233-239. DOI: 10.1016/j.envpol.2008.08.004.10.1016/j.envpol.2008.08.00418824285Search in Google Scholar

Karlsson, H. L., Gustafsson, J., Cronholm, P., & Möller, L. (2009). Size-dependent toxicity of metal oxide particles - A comparison between nano- and micrometer size. Toxicology Letters, 188, 112-118. DOI: 10.1016/j.toxlet.2009.03.014.10.1016/j.toxlet.2009.03.01419446243Search in Google Scholar

Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998a). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Monitoring of fine-dispersed components of the atmospheric aerosols in Kraków; results of isotopic and geochemical studies. Proceedings of the II International Scientific Conference, „Air protection in theory and applications”, Suchecki T. T., Kapała J., Kumazawa, H. (Eds.), Inst. Env. Engineering of the Polish Academy of Sciences, 203-205.Search in Google Scholar

Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998b). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Proceedings of the II Intern. Scientific Conerence, „Air protection in theory and applications”, Section III. Transformation and transport of pollutants in the atmosphere/troposphere, Suchecki T. T., Zwoździak J., (Eds.), Polska Akademia Nauk, Instytut Podstaw Inżynierii Środowiska, Komitet Inżynierii Środowiska, Prace i Studia, 48, 207-225.Search in Google Scholar

Krug, H. F. (2014). Nanosafety research - are we on the right track? Some thoughts based on a comprehensive literature review. Angewandte Chemie International Edition, 53, 12304-12319. DOI: 10.1002/anie.201403367.10.1002/anie.20140336725302857Search in Google Scholar

Kumar, P., Robins, A., Vardoulakis, S. & Britter, R. (2010). A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44, 5035-5052. DOI: 10.1016/j.atmosenv.2010.08.016.10.1016/j.atmosenv.2010.08.016Search in Google Scholar

Liu, K., Lin, X., & Zhao, J. (2013). Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. International Journal of Nanomedicine, 8, 2509-2520. DOI: 10.2147/IJN.S46919.10.2147/IJN.S46919372057823901269Search in Google Scholar

Long, T., Saleh, N., Tilton, R., Lowry, G., & Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science and Technology, 40, 4346-4352. DOI: 10.1021/es060589n.10.1021/es060589n16903269Search in Google Scholar

Manecki A., & Wilczyńska W. (1977). Ocena stanu zanieczyszczenia powietrza atmosferycznego pyłami przemysłowymi. Cz. III. Skład fazowy pyłów atmosferycznych z Krzesławic w Nowej Hucie. [Evaluation of the level of concentration of industrial dusts in the atmosphere. Part III. Mineral composition of dust from Krzesławice in Nowa Huta]. Spraw. z Pos. Kom. Nauk. PAN, Oddz. w Krakowie, 19. [in Polish].Search in Google Scholar

Miller, R. J., Bennett, S., Keller, A. A., Pease, S., & Lenihan, H. S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. Plosone, 7, 1-7. DOI: 10.1371/journal.pone.0030321.10.1371/journal.pone.0030321326281722276179Search in Google Scholar

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. DOI: 10.1007/s10646-008-0214-0.10.1007/s10646-008-0214-018461442Search in Google Scholar

Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5-22. DOI:10.1016/j.envpol.2007.06.006.10.1016/j.envpol.2007.06.00617658673Search in Google Scholar

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., & ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8. DOI: 10.1186/1743-8977-2-8.10.1186/1743-8977-2-8126002916209704Search in Google Scholar

Samek L. (2009). Chemical characterization of selected metals by X-ray fluorescence method in particulate matter collected in the area of Krakow, Poland. Microchemical Journal, 92, 140-144. DOI: 10.1016/j.microc.2009.02.007.10.1016/j.microc.2009.02.007Search in Google Scholar

Samek L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57, 601-606.Search in Google Scholar

Schlich, K., Terytze, K., & Hund-Rinke, K. (2012). Effect of TiO2 nanoparticles in the earthworm reproduction test. Environmental Sciences Europe, 24(5). DOI: 10.1186/2190-4715-24-5.10.1186/2190-4715-24-5Search in Google Scholar

Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2014). Evaluation of the Particle Aerosolization from n-TiO2 Photocatalytic Nanocoatings under Abrasion. Journal of Nanomaterials, 2014, 1-11. DOI: 10.1155/2014/185080.10.1155/2014/185080Search in Google Scholar

Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2015). Emission of Titanium Dioxide Nanoparticles from Building Materials to the Environment by Wear and Weather. Environmental Science and Technology, 49, 2163-2170 DOI: 10.1021/es504710p.10.1021/es504710p25590625Search in Google Scholar

Shukla, R. K., Kumar, A., Gurbani, D., Pandey, A. K., Singh S., & Dhawan A. (2013). TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology, 7(1), 48-60. DOI: 10.3109/17435390.2011.629747.10.3109/17435390.2011.62974722047016Search in Google Scholar

Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Heyder, J., & Schulz, H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives, 114(3), 328-333.10.1289/ehp.8266139222416507453Search in Google Scholar

Tucci, P., Porta, G., Agostini, M., Dinsdale, D., Iavicoli, I., Cain, K., Finazzi-Agro, A., Melino, G., & Willis, A. (2013). Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death and Disease, 4, e549. DOI: 10.1038/cddis.2013.76.10.1038/cddis.2013.76Search in Google Scholar

Wang, C.-S., Friedlander, S. K., & Mädler, L. (2005). Nanoparticle aerosol science and technology: an overview. China Particuology, 3, 243-254. DOI: 10.1016/S1672-2515(07)60196-1.10.1016/S1672-2515(07)60196-1Search in Google Scholar

Warheit, D. B. (2004). Nanoparticles: health impacts? Materials Today, 7(2), 32-35. DOI: 10.1016/S1369-7021(04)00081-1.10.1016/S1369-7021(04)00081-1Search in Google Scholar

Wilczyńska-Michalik, W., Tyrała, L., Borowiec, W., Damrat, M., Michalik, M. (2010a). Composition and source of aerosols in Kraków (S Poland). 20th General Meeting of the International Mineralogical Association, Budapest, 21-27 August 2010, Acta Mineralogica-Petrographica, Abstract Series, 21-27 August, 2010, 321.Search in Google Scholar

Wilczyńska-Michalik, W., Damrat, M., Tyrała, Ł., Borowiec, W., Michalik, M. (2010b). Single particle analysis of aerosols in Kraków (Poland). Mineralogia, Special Papers, 36, 86.Search in Google Scholar

Wilczyńska-Michalik, W., & Michalik M. (2015). Skład i pochodzenie cząstek pyłów w powietrzu atmosferycznym w Krakowie [Composition and origin of dust particles in atmosphere in Kraków], Aura, 3, 4-8. [in Polish, English summary].Search in Google Scholar

Windler, L., Lorenz, C., von Goetz, N., Hungerbühler, K., Amberg, M., Heuberger, M., & Nowack, B. (2012). Release of Titanium Dioxide from Textiles during Washing. Environmental Science and Technology, 46, 8181-8188. DOI: 10.1021/es301633b.10.1021/es301633bSearch in Google Scholar

Worobiec, A., Stefaniak, E.A., Kontozova, V., Samek, L., Karaszkiewicz, P., Van Meel, K., & Van Grieken R. (2006). Characterization ofm individual atmospheric particles within the Royal Museum of the Wawel Castle in Cracow, Poland. e-Preservation Science, 3, 63-68.Search in Google Scholar

Wróbel, A., Rokita, U. E., & Maenhaut, W. (2000). Transport of traffic-related aerosols in urban areas. The Science of the Total Environment, 257, 199-211. DOI: 10.1016/S0048-9697(00)00519-2.10.1016/S0048-9697(00)00519-2Search in Google Scholar

Zhu, X., Zhou, J., & Cai, Z. (2011). TiO2 Nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) Embryos. Environmental Science and Technology, 45, 3753-3758. DOI: 10.1021/es103779h.10.1021/es103779h21413738Search in Google Scholar

eISSN:
1899-8526
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, other