Acceso abierto

Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions


Cite

1. Bezrukov, D.A., Ryabov, B.I., Zalite, K., & Bajkova, A.T. (2009). Application of recovering procedures to RT-32 radio maps of the Sun. Latv. J. Phys. Tech. Sci., 6, 49-56.10.2478/v10047-009-0026-xSearch in Google Scholar

2. Bezrukov, D. (2013). Spectral polarimatric observations of the Sun by the VIRAC RT-32 radio telescope: First results. Baltic Astronomy, 22, 9-14.Search in Google Scholar

3. Kallunki, J., Lavonen, N., Järvelä, E., & Uunila, M. (2012). A study of long-term solar activity at 37 GHz. Baltic Astronomy, 21, 255-262.10.1515/astro-2017-0384Search in Google Scholar

4. Brajša, R., Vršnak, B., Ruždjak, V., Jurač, S., Pohjolainen, S., Urpo, H., & Teräsranta, H. (1992). Giant cells on the Sun revealed by low temperature microwave regions? Hvar Obs. Bull., 16, 1, 1-12.Search in Google Scholar

5. Brajša, R., Ruždjak, V., Vršnak, B., Wöhl, H., Pohjolainen, S., & Urpo, H. (1999). An estimate of microwave low-brightness-temperature regions’ heights obtained measuring their rotation velocity. Solar Physics, 184, 281-296.10.1023/A:1005124022163Search in Google Scholar

6. Nikulin, I.F. & Dumin, Y.V. (2016). Coronal partings. Advances in Space Research, 57(3), 904-911. 10.1016/j.asr.2015.11.020Search in Google Scholar

7. Brooks, D., Ugarte-Urra, I., & Warren, H.P. (2015). Full-Sun observations for identifying the sources of the slow solar wind. Nature Communications, 6, 5947. 10.1038/ncomms6947435410625562705Search in Google Scholar

8. Poletto, G. (2013). Sources of solar wind over the solar activity cycle. Journal of Advanced Research, 4, 215-220.10.1016/j.jare.2012.08.007429503625685421Search in Google Scholar

9. Ryabov, B.I., Gary, D.E., Peterova, N.G., Shibasaki, K., & Topchilo, N.A. (2015). Reduced coronal emission above large isolated sunspots. Solar Physics, 290, 21-35. DOI: 10.1007/s11207-014-0634-3Search in Google Scholar

10. Ryabov, B.I. & Shibasaki, K. (2016). Depressed emission between magnetic arcades near a sunspot. Baltic Astronomy, 25, 225-235.10.1515/astro-2017-0124Search in Google Scholar

11. Schatten K. H., Wilcox J. M., & Ness N. F. (1969). A model of interplanetary and coronal magnetic fields. Solar Physics, 6, 442-455.10.1007/BF00146478Search in Google Scholar

12. Schrijver, C. J., DeRosa, M. L., & Title, A. M. (2010). Magnetic field topology and the thermal structure of the corona over solar active regions. ApJ, 719, 1083-1096.10.1088/0004-637X/719/2/1083Search in Google Scholar

13. Bezrukov, D. (2013). Spectral polarimetric observations of the Sun by the VIRAC RT-32 radio telescope: First results. Baltic Astronomy, 22, 9-14.10.1515/astro-2017-0142Search in Google Scholar

14. Starck, J.-L. & Murtagh, F. (1994). Image restoration with noise suppression using the wavelet transform. Astron. Astrophys., 288, 342-348.Search in Google Scholar

15. Starck, J.-L., Murtagh, F., & Bertero, M. (2011). Starlet transform in astronomical data processing. In O. Scherzer (Ed.), Handbook of Mathematical Methods in Imaging (pp. 1489-1531). Springer.10.1007/978-0-387-92920-0_34Search in Google Scholar

16. Stenborg, G. & Cobelli, P.J. (2003). A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. A&A, 398, 1185-1193.10.1051/0004-6361:20021687Search in Google Scholar

17. Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Loukitcheva, M., Barta, M. (2016). Solar science with the Atacama large millimeter/submillimeter array-a new view of our Sun. Space Sci. Rev., 200, 1-73.10.1007/s11214-015-0229-9Search in Google Scholar

18. Brosius, J.W. & White, S.M. (2004). Close association of an extreme-ultraviolet sunspot plume depressions in the sunspot radio emission. Ap. J., 601, 546-558.10.1086/380394Search in Google Scholar

19. Koshiishi, H. (2003). Restoration of solar images by the Steer algorithm. Astron. Astrophys. 412, 893-896.10.1051/0004-6361:20031514Search in Google Scholar

20. Landi, E. & Chiuderi Drago, F. (2008). The quiet-Sun differential emission measure from radio and UV measurements. Ap. J., 675, 1629-1636.10.1086/527285Search in Google Scholar

21. Borovik, V.N., Kurbanov, M.S., & Makarov, V.V. (1992). Distribution of radio brightness of the quiet Sun in the 2-32 cm range. Astron. J., 69, 1288-1302.Search in Google Scholar

22. Slemzin V., Harra L., Urnov A., Kuzin S., Goryaev F., & Bergman D. (2013). Signatures of the slow solar wind streams from active regions in the inner corona. Solar Physics, 286, 157-184.10.1007/s11207-012-0004-ySearch in Google Scholar

23. Bezrukov, D., Ryabov, B., Peterova, N., & Topchilo, N. (2011). Sharp changes in the ordinary mode microwave emission from a stable sunspot: Model analysis. Latv. J. Phys. Tech. Sci., 48(2), 56-69.10.2478/v10047-011-0016-7Search in Google Scholar

24. Liewer, P.C., Neugebauer, M., & Zurbuchen, T. (2004). Characteristics of active-region sources of solar wind near solar maximum. Solar Physics, 223, 209-229.10.1007/s11207-004-1105-zSearch in Google Scholar

25. Baker, D., van Driel-Gesztelyi, L., Mandrini, C. H., Démoulin, P., & Murray, M. J. (2009). Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Ap. J., 705, 926-935.10.1088/0004-637X/705/1/926Search in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics