1. bookVolumen 54 (2017): Edición 1 (February 2017)
Detalles de la revista
License
Formato
Revista
eISSN
2255-8896
Primera edición
18 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

The Study of Adsorption Process of Pb Ions Using Well-Aligned Arrays of ZnO Nanotubes as a Sorbent

Publicado en línea: 30 Mar 2017
Volumen & Edición: Volumen 54 (2017) - Edición 1 (February 2017)
Páginas: 41 - 50
Detalles de la revista
License
Formato
Revista
eISSN
2255-8896
Primera edición
18 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés

1. Amin, M.T., Alazba, A.A., & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater.Sci. Eng., 1–24.DOI: http://dx.doi.org/10.1155/2014/825910.10.1155/2014/825910Search in Google Scholar

2. Singh, S., Barick, K.C., & Bahadur, D. (2013). Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. Nanotechnol, 3(20). DOI 10.5772/57237.10.5772/57237Search in Google Scholar

3. Rahman, M.M., Bahadar, K., Hadi, S., & Marwani, M. (2014). Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation, J.Ind. Eng. Chem. 20(3), 1071–1078. DOI: 10.1016/j.jiec.2013.06.044.10.1016/j.jiec.2013.06.044Search in Google Scholar

4. Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., Ghasemian, M.B. (2013). A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: optimization, equilibrium modeling, and kinetics studies. Int. J. Environ. Sci. Technol., 10, 325–340. DOI: 10.1007/s13762-012-0135-6.10.1007/s13762-012-0135-6Search in Google Scholar

5. Srivastava, S., & Srivastav, Y. (2013). Removal of arsenic from waste water by using ZnO nano-materials. J.Mater. Sci.Eng. B, 3(8), 483–492.10.17265/2161-6221/2013.08.001Search in Google Scholar

6. Khan, S.B., Rahman, M.M., Marwani, H.M., Asiri A.M., & Alamry, K.A. (2013). An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanosc. Res. Lett. 8, 377. DOI: 10.1186/1556-276X-8-377.10.1186/1556-276X-8-377384873324011201Search in Google Scholar

7. Rahman, M.M., Khan, S.B. Asiri, A.M., Marwani, H.M., & Qusti, A.H. (2013). Selective detection of toxic Pb (II) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites, Comp. B, 54, 215–223. DOI:http://dx.doi.org/10.1016/j.compositesb.2013.05.018.10.1016/j.compositesb.2013.05.018Search in Google Scholar

8. Kannadasan, N., Shanmugam, N., Sathishkumar, K., Cholan, S., Ponnguzhali, R., & Viruthagiri, G. (2015). Optical behavior and sensor activity of Pb ions incorporated ZnO nanocrystals. Spectrochim. Acta A: Molecul. Biomolecul. Spectrosc. 143, 179–186. DOI: http://dx.doi.org/10.1016/j.saa.2015.01.113.10.1016/j.saa.2015.01.11325727294Search in Google Scholar

9. Erdem, M., Ucar, S. Karagöz, S., & Tay, T. (2013). Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Sci.World. J., 7. DOI: http://dx.doi.org/10.1155/2013/146092.10.1155/2013/146092370372323853528Search in Google Scholar

10. Xianbiao, W., Weiping, C., Shengwen, L., Guozhong, W., Zhikun, W., & Huijun Z. (2013). ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 422, 199–205. DOI:http://dx.doi.org/10.1016/j.colsurfa.2013.01.031.10.1016/j.colsurfa.2013.01.031Search in Google Scholar

11. Wang, X., Guo, Y., Yang, L., Han, M., & Zhao, J. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2(7), 154. DOI:10.4172/2161-0525.1000154.10.4172/2161-0525.1000154Search in Google Scholar

12. Yeong, H.K., Dandu, K.V.R., and Jae, S.Y. (2013). Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications. Nanoscale Research Letters, 8, 262.Search in Google Scholar

13. Krasovska, M., Gerbreders, V., Paskevics, V. Ogurcovs, A., & Mihailova, I. (2015). Obtaining a well-aligned ZnO nanotube array using the hydrothermal growth method. Latvian J. Phys.Techn.Sci. 5(52), 28–40. DOI: 10.1515/lpts-2015-0026.10.1515/lpts-2015-0026Search in Google Scholar

14. Chae, K., Zhang, Q., Kim, J.S, Jeong, Y., & Cao, G. (2010). Low-temperature solution growth of ZnO nanotube arrays. Beilstein J.Nanotechnol, 1, 128–134. DOI:10.3762/bjnano.1.15.10.3762/bjnano.1.15304591421977402Search in Google Scholar

15. Roza, L., Rahman, M.Y.A., Umar, A.A., & Salleh, M.M. (2015). Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electro-chemical (PEC) solar cell application. J. All.Comp., 618, 153–158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113Search in Google Scholar

16. Song, Y., Xi, J., Xu S., Yang, R., Gao, Z., Hu, C., & Wang, Z. (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectricnanogenerators. J. Mater. Chem., 19(48), 9260–9264. DOI: 10.1039/B917525C.10.1039/b917525cSearch in Google Scholar

17. Hongqiang, W., Guanghai, L., Lichao, J., Guozhong, W., & Chunjuan, T. (2008). Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes. J. Phys. Chem. C, 112(31), 11738–11743. DOI: 10.1021/jp803059k.10.1021/jp803059kSearch in Google Scholar

18. Yap, Y.K. (2009). Growth mechanisms of vertically-aligned carbon, boron nitride, and zinc oxide nanotubes. AIP Conf. Proc. 1150, 126. DOI: 10.1063/1.3192226.10.1063/1.3192226Search in Google Scholar

19. Alfind, A., Frit, P., Deepalakshmi, K., Prithivikumaran, N., & Jeyakumaran, N. (2014). The effect of annealing time on lead oxide thin films coated on indium tin oxide substrate. Int. J. ChemTech Res., 6(13), 5347–5352.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo