Cite

1. Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30, 219–230.10.1016/j.pecs.2003.10.004Search in Google Scholar

2. Goldemberg, J., and Coelho, S. T. (2004). Renewable energy—Traditional biomass vs. modern biomass. Energy Policy 32, 711–714.10.1016/S0301-4215(02)00340-3Search in Google Scholar

3. Omri, A., and Nguyen, D. K. (2014). On the determinants of renewable energy consumption: International evidence. Energy 72, 554–560.10.1016/j.energy.2014.05.081Search in Google Scholar

4. Fuelling a Biomess. (2011). Available at http://www.greenpeace.org/canada/en/recent/Burning-trees-for-energy-puts-Canadian-forests-and-climate-at-risk-Greenpeace/.Search in Google Scholar

5. Brewer, J. (2008). The coming biofuels disaster. Available at https://web.archive.org/web/20081025185709/http://www.rockridgeinstitute.org/research/rockridge/coming-biofuels-disaster.htmlSearch in Google Scholar

6. Redman, J., and Tricarico, A. (2013). Wall Street’s climate finance bonanza. Foreign Policy in Focus. Available at http://fpif.org/wall_streets_climate_finance_bonanza/Search in Google Scholar

7. Searchinger, T. D. et al. (2009). Fixing a critical climate accounting error. Science 326, 527–528.10.1126/science.117879719900885Search in Google Scholar

8. Mitchell, S. R., Harmon, M. E., and O’Connell, K. E. B. (2012). Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4, 818–827.10.1111/j.1757-1707.2012.01173.xSearch in Google Scholar

9. Pingoud, K., Ekholm, T., Soimakallio, S., and Helin, T. (2015). Carbon balance indicator for forest bioenergy scenarios. GCB Bioenergy. doi: 10.1111/gcbb.12253.10.1111/gcbb.12253Search in Google Scholar

10. Timmons, D. S., Buchholz, T., and Veeneman, C. H. (2015). Forest biomass energy: Assessing atmospheric carbon impacts by discounting future carbon flows. GCB Bioenergy, doi: 10.1111/gcbb.12276.10.1111/gcbb.12276Search in Google Scholar

11. Upton, J. (2015). Pulp Fiction. Available at http://reports.climatecentral.org/pulp-fiction/1/Search in Google Scholar

12. Abolins, J., and Gravitis, J. (2011). Potential of photosynthesis as a renewable source of energy and materials. Latv. J. Phys. Tec. Sci. 47 (5), 16–23.10.2478/v10047-011-0031-8Search in Google Scholar

13. Abolins, J., and Gravitis, J. (2011). A simple analytical model for remote assessment of the dynamics of biomass accumulation. Progress in Biomass and Bioenergy Production, ed. S. Shahid Shaukat (pp. 91–106). InTech Open Access Publishers. ISBN 978-953-307-491-7. Available at http://www.intechweb.org/booksprocess/aboutthebook/chapter/14232/book/460.Search in Google Scholar

14. Zeide, B. (2004). Intrinsic units in growth modelling. Ecological Modelling 175, 249–259.10.1016/j.ecolmodel.2003.10.017Search in Google Scholar

15. Latvijas Valsts mežzinātnes institūts “Silava”. Available at http://www.silava.lv/23/section.aspx/View/119.Search in Google Scholar

16. Schulze, E.-D., Körner, C., Law, B.E., Haberl, H., and Luyssaert, S. (2012) Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor green-house gas neutral. GCB Bioenergy, 4 (6), 611–616.10.1111/j.1757-1707.2012.01169.xSearch in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics