1. bookVolumen 62 (2018): Edición 3 (July 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Soft computing model for analysing the effect of friction stir processing parameters on the intergranular corrosion susceptibility of aluminium alloy AA5083

Publicado en línea: 06 Aug 2018
Volumen & Edición: Volumen 62 (2018) - Edición 3 (July 2018)
Páginas: 97 - 107
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. P. Cabot, F. Centellas, E. Perez, and R. Loukili, “Pitting and repassivation processes of Al · Zn · Mg alloys in chloride solutions containing sulphate,” Electrochimica acta1993, 38 (18), 2741-2748.10.1016/0013-4686(93)85093-ESearch in Google Scholar

2. J. C. Bailey, F. C. Porter, A. W. Pearson, and R. A. Jarman, “4.1 – Aluminium and Aluminium Alloys,” Corrosion (3rd Edition), pp. 4:3-3:37, Oxford: Butterworth-Heinemann, 1994.10.1016/B978-0-08-052351-4.50043-1Search in Google Scholar

3. J. A. Lyndon, R. K. Gupta, M. A. Gibson, and N. Birbilis, “Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys,” Corrosion Science2013, 70, 290-293.10.1016/j.corsci.2012.12.022Search in Google Scholar

4. R. H. Jones, V. Y. Gertsman, J. S. Vetrano, and C. F. Windisch Jr, “Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy,” Scripta Materialia2004, 50 (10), 1355-1359.10.1016/j.scriptamat.2004.01.038Search in Google Scholar

5. E. Brillas, P. L. Cabot, F. Centellas, J. A. Garrido, E. Pérez, and R. M. Rodríguez, “Electrochemical oxidation of high-purity and homogeneous Al–Mg alloys with low Mg contents,” Electrochimica Acta1998, 43 (7), 799-812.10.1016/S0013-4686(97)00266-1Search in Google Scholar

6. R. S. Mishra, P. S. De, and N. Kumar, “Fundamental Physical Metallurgy Background for FSW/P,” Friction Stir Welding and Processing: Science and Engineering, pp. 59-93, Cham: Springer International Publishing, 2014.Search in Google Scholar

7. R. S. Mishra, and Z. Ma, “Friction stir welding and processing,” Materials Science and Engineering: R: Reports2005, 50 (1), 1-78.10.1016/j.mser.2005.07.001Search in Google Scholar

8. R. Padmanaban, V. Balusamy, and V. R. Kishore, “Effect of axial pressure and tool rotation speed on temperature distribution during dissimilar friction stir welding,” Advanced Materials Research2012, 1934-1938.10.4028/www.scientific.net/AMR.418-420.1934Search in Google Scholar

9. R. V. Vignesh, R. Padmanaban, M. Arivarasu, S. Thirumalini, J. Gokulachandran, and R. Mutyala Sesha Satya Sai, “Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates,” IOP Conference Series: Materials Science and Engineering2016, 149 (1), pp. 012208.10.1088/1757-899X/149/1/012208Search in Google Scholar

10. Z. Ma, “Friction stir processing technology: a review,” Metallurgical and Materials Transactions A2008, 39 (3), 642-658.10.1007/s11661-007-9459-0Search in Google Scholar

11. R. Padmanaban, R. Vaira Vignesh, M. Arivarasu, K. P. Karthick, and A. Abirama Sundar, “Process parameters effect on the strength of Friction Stir Spot Welded AA6061,” ARPN Journal of Engineering and Applied Sciences2016, 11 (9), 6030-6035.Search in Google Scholar

12. V. V. Ramalingam, and P. Ramasamy, “Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function,” Transactions of the Indian Institute of Metals2017, 70 (10), 2575-2589.10.1007/s12666-017-1110-1Search in Google Scholar

13. S. Ilangovan, R. V. Vignesh, R. Padmanaban, and J. Gokulachandran, “Comparison of Statistical and Soft Computing Models for Predicting Hardness and Wear Rate of Cu–Ni–Sn Alloy,” Progress in Computing, Analytics and Networking, pp. 559-571: Springer, 2018.10.1007/978-981-10-7871-2_54Search in Google Scholar

14. R. V. Vignesh, and R. Padmanaban, “Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model,” Russian Journal of Non-Ferrous Metals2018, 59 (2), 135-141.10.3103/S1067821218020116Search in Google Scholar

15. B. Yegnanarayana, Artificial neural networks: PHI Learning Pvt. Ltd., 2009.Search in Google Scholar

16. S.-C. Wang, “Artificial neural network,” Interdisciplinary Computing in Java Programming, pp. 81-100: Springer, 2003.10.1007/978-1-4615-0377-4_5Search in Google Scholar

17. G. Klir, and B. Yuan, Fuzzy sets and fuzzy logic: Prentice Hall New Jersey, 1995.10.1109/45.468220Search in Google Scholar

18. S. Sivanandam, S. Sumathi, and S. Deepa, Introduction to fuzzy logic using MATLAB: Springer, 2007.10.1007/978-3-540-35781-0Search in Google Scholar

19. R. R. Yager, and L. A. Zadeh, An introduction to fuzzy logic applications in intelligent systems: Springer Science & Business Media, 2012.Search in Google Scholar

20. G. F. V. Voort, ASM Handbook Volume 9: Metallography and Microstructures, pp. 1184: ASM International, 2004.Search in Google Scholar

21. E. Pouillier, A. F. Gourgues, D. Tanguy, and E. P. Busso, “A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement,” International Journal of Plasticity2012, 34, 139-153.10.1016/j.ijplas.2012.01.004Search in Google Scholar

22. G. M. Scamans, N. J. H. Holroyd, and C. D. S. Tuck, “The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys,” Corrosion Science1987, 27 (4), 329-347.10.1016/0010-938X(87)90076-XSearch in Google Scholar

23. Y.-K. Yang, and T. Allen, “Direct visualization of β phase causing intergranular forms of corrosion in Al–Mg alloys,” Materials Characterization2013, 80, 76-85.10.1016/j.matchar.2013.03.014Search in Google Scholar

24. S.-J. Kim, S.-J. Lee, J.-Y. Jeong, and K.-H. Kim, “Electrochemical characteristics of Al–Mg and Al–Mg–Si alloy in sea water,” Transactions of Nonferrous Metals Society of China2012, 22 (S3), 881-886.10.1016/S1003-6326(12)61820-2Search in Google Scholar

25. R. Padmanaban, V. Ratna Kishore, and V. Balusamy, “Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys.” Procedia Engineering2014, 97, 854-863.10.1016/j.proeng.2014.12.360Search in Google Scholar

26. R. Goswami, G. Spanos, P. S. Pao, and R. L. Holtz, “Precipitation behavior of the ß phase in Al-5083,” Materials Science and Engineering: A2010, 527 (4–5), 1089-1095.10.1016/j.msea.2009.10.007Search in Google Scholar

27. M. Mezbahul-Islam, A. O. Mostafa, and M. Medraj, “Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data,” Journal of Materials2014, 33.10.1155/2014/704283Search in Google Scholar

28. C. Meng, D. Zhang, H. Cui, L. Zhuang, and J. Zhang, “Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys,” Journal of Alloys and Compounds2014, 617, 925-932.10.1016/j.jallcom.2014.08.099Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo