1. bookVolumen 61 (2017): Edición 4 (October 2017)
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Materials for use in calcium looping technology for CCS – corrosion processes in high-temperature CO2

Publicado en línea: 27 Oct 2017
Volumen & Edición: Volumen 61 (2017) - Edición 4 (October 2017)
Páginas: 143 - 148
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Blamey J., Anthony E. J., Wang J., Fenell P. S.: The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science 2010, 36, 260-279.10.1016/j.pecs.2009.10.001Abierto DOISearch in Google Scholar

2. Ciahotný K., Staf M., Hlinčík T., Vrbová V., Tekáč J., Jiříček I.: Vysokoteplotní karbonátová smyčka - moderní metoda odstraňování CO2 ze spalin. Http://hitecarlo.vscht.cz (Accesed 9 May 2017).Search in Google Scholar

3. Sim S., Cole I.S., Choi Y.-S., Birbilis N.: A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes. International Journal of Greenhouse Gas Control 2014, 29, 185-199.10.1016/j.ijggc.2014.08.010Search in Google Scholar

4. Firouzdor V., Sridharan K., Cao G., Anderson M., Allen T.R.: Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corros. Sci. 2013, 69, 281-291.Search in Google Scholar

5. Cao G. et al.: Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros. Sci. 2012, 62, 246-255.10.1016/j.corsci.2012.03.029Abierto DOISearch in Google Scholar

6. Berstad D., Anantharaman R., Jordal K.: Post-combustion CO2 capture from a natural gas combined cycle by CaO/ CaCO3 looping. International Journal of Greenhouse Gas Control 2012, 11, 25-33.10.1016/j.ijggc.2012.07.021Search in Google Scholar

7. Rouillard F., Furukawa T.: Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2. Corros. Sci. 2016, 105, 120-132.Search in Google Scholar

8. Gheno T., Monceau D., Zhang J.Q., Young D. J.: Carburisation of ferritic Fe-Cralloys by low carbon activity gases. Corros. Sci. 2011, 53, 2767-2777.Search in Google Scholar

9. Young D., Huczkowski P., Olszewski T., Huttel T., Singheiser L., Quadakkers W.J.: Non-steady state carburisation of martensitic 9-12%Cr steels in CO2 rich gases at 550◦C. Corros. Sci. 2014, 88, 161-169.Search in Google Scholar

10. Převodní tabulka norem nerezových materiálů. http://www.inoxspol.cz/prevodni-tabulka-norem-nerezovych-materialu-rubrika.html, (Accesed 29 Feb 2017).Search in Google Scholar

11. Vnouček, M.: Nikl a jeho slitiny, Titan a jeho slitiny. https://www.opi.zcu.cz/download/nikl-titan-09_10.pdf (Accessed 12 Apr 2017).Search in Google Scholar

12. Parks C. J.: Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide. Master Thesis, Carleton University, 2013.Search in Google Scholar

13. Xu N., Monceau D., Young D., Furtado J.: High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures. Corros. Sci. 2008, 50, 2398-2406.Search in Google Scholar

14. Naing Aung N., Liu X.: Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy - A high temperature electrochemical sensor study. Corros. Sci. 2013, 76, 390-402.Search in Google Scholar

15. Tan L., Anderson M., Taylor D., Allen T.R. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros. Sci. 2011, 53, 3273-3280.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo