Cite

1. Witte, F., The history of biodegradable magnesium implants: A review. Acta Biomaterialia. 2010, 1680-1692.10.1016/j.actbio.2010.02.02820172057Search in Google Scholar

2. Al-Zubaydi, A.,et al. Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A 2015, 637(1-2), 1-11.10.1016/j.msea.2015.04.004Search in Google Scholar

3. Lee, H., et al.Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A 2015, 630, 90-98.10.1016/j.msea.2015.02.011Search in Google Scholar

4. Suwas, S., Gottstein, S., Kumar. R., Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium. Materials Science and Engineering 2007, 471 (1-2), 1-14.10.1016/j.msea.2007.05.030Search in Google Scholar

5. Zhao, Y.F., et al. High strength Mg-Zn-Ca alloys prepared by atomization and hot pressing process. Materials Letters 2014, 118, 55-58.10.1016/j.matlet.2013.12.053Open DOISearch in Google Scholar

6. Campo, R., et al, a další. Mechanical properties and corrosion behavior of Mg-HAP composites. Journal of the Mechanical Behavior of Biomedical Materials. 2014.10.1016/j.jmbbm.2014.07.01425146678Search in Google Scholar

7. Zheng, Y.F., et al. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. ActaBiomaterialia. 2010, 6 (5), 1783-1791.Search in Google Scholar

8. Kang, M.,et al. Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Materials Letters 2013, 108, 122-124.10.1016/j.matlet.2013.06.096Search in Google Scholar

9. Anish, R., Sivapragash, M., A Robertsingh, G. Compressive behaviour of SiC/ncsc reinforced Mg composite processed through powder metallurgy route. Materials 2014, 63, 384-388.10.1016/j.matdes.2014.06.040Search in Google Scholar

10. Zhong, X.L., Wong, W.L.E., Gupta, M. Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. ActaMaterialia 2007, 55 (18), 6338-6344.10.1016/j.actamat.2007.07.039Search in Google Scholar

11. Liao, J., Hotta, M., Mori, Y. Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy. Materials Science and Engineering A 2012, 544, 10-20.10.1016/j.msea.2012.02.046Search in Google Scholar

12. Čapek, J., Vojtěch, D. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Materials Science and Engineering C 2014, 35, 21-28.10.1016/j.msec.2013.10.01424411347Open DOISearch in Google Scholar

13. Čapek, J., Vojtěch, D., Properties of porous magnesium prepared by powder metallurgy. Materials Science and Engineering C 2013, 33 (1), 564-569.10.1016/j.msec.2012.10.00225428111Open DOISearch in Google Scholar

14. Bi, Y., Zheng, Y., Li, Y. Microstructure and mechanical properties of sintered porous magnesium using polymethyl methacrylate as the space holder. Materials Letters 2015, 161, 583-586.10.1016/j.matlet.2015.09.039Search in Google Scholar

15. Rashad, M., et al. Improved mechanical proprieties of “magnesium based composites” with titanium-aluminum hybrids. Journal of Magnesium and Alloys 2015, 3 (1), 1-9.10.1016/j.jma.2014.12.010Search in Google Scholar

16. I. Baker, D. Iliescu A Y. Liao. Containerless Consolidation of Mg Powders Using ECAE. Materials and Manufacturing Processes 2010, 25(12), 1381.10.1080/10426914.2010.495031Search in Google Scholar

17. M.D. Pereda et al. Corrosion inhibition of powder metallurgy Mg by fluoride treatments. Acta Biomaterialia 2010, 6(5), 1772-1782.10.1016/j.actbio.2009.11.00419913114Open DOISearch in Google Scholar

18. M. Bukovina and B. Hadzima, “vplyv úpravy povrchu na elektrochemické charakteristiky horčíkovej zliatiny AE21”, Transfer inovácií 2009, 15, 28-32.Search in Google Scholar

19. G. Song, Corrosion of magnesium alloys, 1.. Philadelphia, PA: Woodhead Publishing, 2011.10.1533/9780857091413Search in Google Scholar

20. B. Setzler and T. Fuller, “A Physics-Based Impedance Model of Proton Exchange Membrane Fuel Cells Exhibiting Low-Frequency Inductive Loops”, Journal of the Electrochemical Society 2015, 162 (6), F519-F530.10.1149/2.0361506jesSearch in Google Scholar

eISSN:
1804-1213
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass