Acceso abierto

Koroze slitin zirkonia v prostøedí vyšších koncentrací lithia/ Corrosion of zirconium alloys in the environments with elevated concentration of lithium


Cite

1. Müller, S; et al. Corrosion of zirconium alloys in concentrated lithium hydroxide solutions. J. Nucl. Mater. 2013, 439, 251-257.Search in Google Scholar

2. Liu, W.; Zhou, B.; et al. Detrimental role of LiOH on the oxide fi lm formed on Zircaloy-4. Corros. Sci. 2005, 47, 1855-1860.Search in Google Scholar

3. Infl uence of various additions to water on Zry-4 corrosion, International Atomic Energy Agency; Garzarolli, F.; 1989.Search in Google Scholar

4. Contribution to the Understanding of the Effect of the Water Chemistry of the Oxidation Kinetics of the Zircaloy-4, Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354; Pecheur, D.; 2000.Search in Google Scholar

5. Cox, B; et al. Dissolution of zirconium oxide fi lms in 300°C LiOH. J. Nucl. Mater. 1993, 199, 272-284.Search in Google Scholar

6. Experimental and Theoretical Studies of Parameters that Infl uence Corrosion of Zircaloy-4, Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245; Billot, Ph.; 1994.Search in Google Scholar

7. Saario, T.; Effect of Lithium Hydroxide on stability of Fuel Cladding Oxide Film in Simulated Pressurized Water Reactor Primary Water Environments. Corrosion 1997, 53 (9), 724-729.10.5006/1.3290306Search in Google Scholar

8. Lithium Uptake and the Corrosion of Zirconium Alloys in Aqueous Lithium Hydroxide Solutions, Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132; Ramasubramanian, N.; 1990.Search in Google Scholar

9. Effect of LiOH, NaOH and KOH on corrosion and oxide microstructure of Zr-based alloys: Water chemistry and corrosion control of clading and primary circuit components, International Atomic Energy Agency; Jeong, Y.; et al. 1998.Search in Google Scholar

10. Jeong, Y; et al. Cation incorporation into zirconium oxide in LiOH, NaOH and KOH solutions. J. Nucl. Mater. 1999, 275, 221-224.Search in Google Scholar

11. Microstructure of oxide fi lms formed during the waterside corrosion of the Zircaloy-4 cladding in lithiated environment, Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295; Pecheur, N.; at al. 1996.Search in Google Scholar

12. Van Meirhaeghe, R. In the application of the Kramers- Kronig relations to problems concerning the frequency dependence of electrode impedance. Electrochim. Acta 1975, 20, 995-999.10.1016/0013-4686(75)85062-6Search in Google Scholar

13. Fattah-Alhosseini, A.: Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott-Schottky analysis in conjunction with the point defect model. Arabian Journal of Chemistry (2012), doi:10.1016/j.arabjc.2012.02.015.10.1016/j.arabjc.2012.02.015Search in Google Scholar

14. Taveria, L. Infl uence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic fi lms formed on AISI 304L. Corros. Sci. 2010, 52, 2813-2818.Search in Google Scholar

15. Gomes, W. Impedance spectroscopy at semiconductor electrodes: revies and recent developments. Electrochim. Acta 1996, 41, 967-973.10.1016/0013-4686(95)00427-0Search in Google Scholar

16. Zhang, G. Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution. Electrochim. Acta 2009, 55, 316-324.10.1016/j.electacta.2009.09.001Search in Google Scholar

eISSN:
1804-1213
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass