1. bookVolumen 25 (2017): Edición 1 (June 2017)
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Acceso abierto

Petal Growth Physiology of Cut Rose Flowers: Progress and Future Prospects

Publicado en línea: 30 Jun 2017
Volumen & Edición: Volumen 25 (2017) - Edición 1 (June 2017)
Páginas: 5 - 18
Recibido: 01 Jan 2017
Aceptado: 01 Apr 2017
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año

Antosiewicz D.M., Purugganan M.M., Polisensky D.H., Braam J. 1997. Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation. Plant Physiology 115: 1319-1328. DOI: 10.1104/pp.115.4.1319.10.1104/pp.115.4.13191585979414546Search in Google Scholar

Azad A.K., Sawa Y., Ishikawa T., Shibata H. 2004. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant and Cell Physiology 45: 608-617. DOI: 10.1093/pcp/pch069.10.1093/pcp/pch06915169943Search in Google Scholar

Azad A.K., Katsuhara M., Sawa Y., Ishikawa T., Shibata H. 2008. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant and Cell Physiology 49: 1196-208. DOI: 10.1093/pcp/pcn095.10.1093/pcp/pcn09518567892Search in Google Scholar

Azad A.K., Hanawa R., Ishikawa T., Sawa Y., Shibata H. 2013. Expression profiles of aquaporin homologues and petal movement during petal development in Tulipa gesneriana. Physiologia Plantarum 148: 397-407. DOI: 10.1111/j.1399-3054.2012.01717.x.10.1111/j.1399-3054.2012.01717.x23088645Search in Google Scholar

Balibrea Lara M.E., Gonzalez Garcia M-C., Fatima T., Ehneß R., Lee T.K., Proels R. et al. 2004. Extracellular invertase is an essential component of cytokinin- mediated delay of senescence. Plant Cell 16: 1276-1287. DOI: 10.1105/tpc.018929.10.1105/tpc.01892942321515100396Search in Google Scholar

Belfield E.J., Ruperti B., Roberts J.A., McQueen-Mason S.J. 2005. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. Journal of Experimental Botany 56: 817-823. DOI: 10.1093/jxb/eri076.10.1093/jxb/eri07615689341Search in Google Scholar

Bendahmane M., Dubois A., Raymond O., Bris M.L. 2013. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany 64: 847-857. DOI: 10.1093/jxb/ers387.10.1093/jxb/ers387359494223364936Search in Google Scholar

Berkholst C.E.M. 1989. High starch content in ‘Sonia’ rose corollas at picking may add quality to vase life. Gartenbauwissenschaft 54: 9-10.Search in Google Scholar

Bieleski R.L. 1993. Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiology 103: 213-219. DOI: 10.1104/pp. in Google Scholar

Biran M., Robinson M., Halevy A.H. 1974. Factors determining petal color of Baccara roses. Journal of Experimental Botany 25: 624-663. DOI: 10.1093/jxb/25.4.624.10.1093/jxb/25.4.624Search in Google Scholar

Bieleski R., Elgar J., Heyes J., Woolf A. 2000. Flower opening in Asiatic lily is a rapid process controlled by dark-light cycling. Annals of Botany 86: 1169-1174. DOI: 10.1006/anbo.2000.1289.10.1006/anbo.2000.1289Search in Google Scholar

Burdett A.N. 1970. The cause of bent neck in cut roses. Journal of the American Society for Horticultural Science 95: 427-431.10.21273/JASHS.95.4.427Search in Google Scholar

Brummel D.A., Harpster M.H., Dunsmuir P. 1999. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Molecular Biology 39: 161-169. DOI: 10.1023/A:1006130018931.10.1023/A:1006130018931Search in Google Scholar

Catalá C., Rose J.K.C., Bennett A.B. 2000. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiology 122: 527-534. DOI: 10.1104/pp.122.2.527.10.1104/pp.122.2.527Search in Google Scholar

Chen W., Yin X., Wang L., Tian J., Yang R., Liu D. et al. 2013. Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1. Plant Molecular Biology 83: 219-233. DOI: 10.1007/s11103-013-0084-6.10.1007/s11103-013-0084-6Search in Google Scholar

Chin C., Sacalis J.N. 1977. Metabolism of sucrose in cut roses. II. Movement and inversion of sucrose absorbed by cyt rose stems. Journal of the American Society for Horticultural Science 102: 537-540.10.21273/JASHS.102.5.537Search in Google Scholar

Cosgrove D.J. 2001. Wall structure and wall loosening. A look backwards and forwards. Plant Physiology 125: 131-134. DOI: 10.1104/pp. in Google Scholar

Civello P.M., Powell A.L.T., Sabehat A., Bennett A.B. 1999. An expansin gene expressed in ripening strawberry fruit. Plant Physiology 121: 1273-1279. DOI: 10.1104/pp.121.4.1273.10.1104/pp.121.4.1273Search in Google Scholar

Cram W.J. 1976. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In: Lüttge U., Pitman M.G. (Eds.), Encyclopedia of plant physiology, Transport in plants II, pp. 284-316. DOI: 10.1007/978-3-642-66227-0_11.10.1007/978-3-642-66227-0_11Search in Google Scholar

Dai F., Zhang C., Jiang X., Kang M., Yin X., Lü P. et al. 2012. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiology 160: 2064-2082. DOI: 10.1104/pp.112.207720.10.1104/pp.112.207720Search in Google Scholar

Damon S., Hewitt J., Nieder M., Bennett A. 1988. Sink metabolism in tomato fruit. II. Phloem unloading and sugar uptake. Plant Physiology 87: 731-736. DOI: 10.1104/pp.87.3.731.10.1104/pp.87.3.731Search in Google Scholar

de Stigter H.C.M. 1980. Water balance of cut and intact Sonia rose plants. Zeitschrift für Pflanzenphysiologie 99: 131-140. DOI: 10.1016/s0044-328x(80)80122-x.10.1016/S0044-328X(80)80122-XSearch in Google Scholar

Doi M. 1995. Flower durability. In: Nogyo Gijutsu Taikei, Kakihen, vol. 3. Nobunkyo, Tokyo, pp. 105-109. [in Japanese with English abstract]Search in Google Scholar

Doi M., Miyagawa Namao M., Inamoto K., Imanishi H. 1999. Rhythmic changes in water uptake, transpiration and water potential of cut roses as affected by photoperiods. Journal of the Japanese Society for Horticultural Science 68: 861-867. DOI: 10.2503/jjshs.68.861. [in Japanese with English abstract]10.2503/jjshs.68.861Search in Google Scholar

Durkin D.J. 1979. Effect of Millipore filtration, citric acid, and sucrose on peduncle water potential of cut rose flower. Journal of the American Society for Horticultural Science 104: 860-863.Search in Google Scholar

Evans R.Y., Reid M.S. 1986. Control of petal expansion during diurnal opening of roses. Acta Horticulturae 181: 55-63. DOI: 10.17660/ActaHortic.1986. in Google Scholar

Evans R.Y., Reid M.S. 1988. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. Journal of the American Society for Horticultural Science 113: 884-888.10.21273/JASHS.113.6.884Search in Google Scholar

Faragher J.D., Mayak S., Tirosh T., Halevy A.H. 1984. Cold storage of rose flowers: Effects of cold storage and water loss on opening and vase life of ‘Mercedes’ roses. Scientia Horticulturae 24: 369-378. DOI: 10.1016/0304-4238(84)90122-5.10.1016/0304-4238(84)90122-5Search in Google Scholar

González M-C., Cejudo F.J. 2007. Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Science 172: 839-846. DOI: 10.1016/j.plantsci.2007. in Google Scholar

Gookin T.E., Hunter D.A., Reid M.S. 2003. Temporal analysis of alpha- and beta-expansin expression during floral opening and senescence. Plant Science 164: 769-781. DOI: 10.1016/S0168-9452(03)00063-3.10.1016/S0168-9452(03)00063-3Search in Google Scholar

Gorin N., Berkholst C.E.M. 1982. Starch in petals of cut roses cv. Sonia as possible criterion of picking. Gartenbauwissenschaft 47: 75-77.Search in Google Scholar

Halevy A.H., Mayak S. 1981. Senescence and postharvest physiology of cut flowers: Part 2. Horticultural Reviews 3: 59-143. DOI: 10.1002/9781118060766.ch3.10.1002/9781118060766.ch3Search in Google Scholar

Hammond J.B.W. 1982. Changes in amylase activity during rose bud opening. Scientia Horticulturae 16: 283-289. DOI: 10.1016/0304-4238(82)90076-0.10.1016/0304-4238(82)90076-0Search in Google Scholar

Harada T., Torii Y., Morita S., Onodera R., Hara Y., Yokoyama R. et al. 2011. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. Journal of Experimental Botany 62: 815-823. DOI: 10.1093/jxb/erq319.10.1093/jxb/erq319300382220959626Search in Google Scholar

Hellmann A., Wernicke W. 1998. Changes in tubulin protein expression accompany reorganization of microtubular arrays during cell shaping in barley leaves. Planta 204: 220-225. DOI: 10.1007/s004250050250.10.1007/s004250050250Search in Google Scholar

Hendel-Rahmanim K., Masci T., Vainstein A., Weiss D. 2007. Diurnal regulation of scent emission in rose flowers. Planta 226: 1491-1499. DOI: 10.1007/s00425-007-0582-3.10.1007/s00425-007-0582-317636322Search in Google Scholar

Ho L.C., Nichols R. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Annals of Botany 41: 227-242. DOI: 10.1093/oxfordjournals.aob.a085272.10.1093/oxfordjournals.aob.a085272Search in Google Scholar

Horibe T., Yamaki S., Yamada K. 2013. Effects of auxin and methyl jasmonate on cut rose petal growth through activation of acid invertase. Postharvest Biology and Technology 86: 195-200. DOI: 10.1016/j.postharvbio.2013. in Google Scholar

Horibe T., Yamada K. 2014a. Petals of cut rose flower show diurnal rhythmic growth. Journal of the Japanese Society for Horticultural Science 83: 302-307. DOI: 10.2503/jjshs1.ch-101.10.2503/jjshs1.CH-101Search in Google Scholar

Horibe T., Yamada K. 2014b. Diurnal rhythm of petal growth in cut rose flowers. Acta Horticulturae 1064: 241-245. DOI: 10.17660/ActaHortic.2015.1064.27.10.17660/ActaHortic.2015.1064.27Search in Google Scholar

Horibe T., Yamaki S., Yamada K. 2014. Leaves of cut rose flower convert exogenously applied glucose to sucrose and translocate it to petal. Journal of Horticultural Research 22: 41-46. DOI: 10.2478/johr-2014-0020.10.2478/johr-2014-0020Search in Google Scholar

Ichimura K., Kohata K., Koketsu M., Yamaguchi Y., Yamaguchi H., Suto K. 1997. Identification of methyl ß-glucopyranoside and xylose as soluble sugar constituents in roses (Rosa hybrida L.). Bioscience, Biotechnology, and Biochemistry 61: 1734-1735. DOI: 10.1271/bbb.61.1734.10.1271/bbb.61.173427393170Search in Google Scholar

Ichimura K., Suto K. 1998. Environmental factors controlling flower opening and closing in a Portulaca hybrid. Annals of Botany 82: 67-70. DOI: 10.1006/anbo.1998.0642.10.1006/anbo.1998.0642Search in Google Scholar

Ichimura K., Mukasa Y., Fujiwara T., Kohata K., Goto R., Suto K. 1999. Possible roles of methyl glucoside and myoinositol in the opening of cut rose flowers. Annals of Botany 83: 551-557. DOI: 10.1006/anbo.1999.0856.10.1006/anbo.1999.0856Search in Google Scholar

Ichimura K., Kawabata Y., Kishimoto M., Goto R., Yamada K. 2002. Variation with the cultivar in the vase life of cut rose flowers. Bulletin of National Institute of Floriculture Sciences 2: 9-20.Search in Google Scholar

Ichimura K., Kawabata Y., Kishimoto M., Goto R., Yamada K. 2003. Shortage of soluble carbohydrates is largely responsible for short vase life of cut ‘Sonia’ rose flowers. Journal of the Japanese Society for Horticultural Science 72: 292-298. DOI: 10.2503/jjshs. in Google Scholar

Ichimura K., Kishimoto M., Norikoshi R., Kawabata Y., Yamada K. 2005. Soluble carbohydrates and variation in vaselife of cut rose cultivars ‘Delilah’ and ‘Sonia’. Journal of Horticultural Science and Biotechnology 80: 280-286. DOI: 10.1080/14620316.2005.11511930.10.1080/14620316.2005.11511930Search in Google Scholar

Ichimura K., Shimizu-Yumoto H. 2007. Extension of the vase life of cut roses by treatment with sucrose before and during simulated transport. Bulletin of National Institute of Floriculture Sciences 7: 17-27.Search in Google Scholar

Ishikawa T., Nishio J., Ichimura K. 2006. Effects of light shielding treatment during cultivation on vase life and sugar content of cut chrysanthemum. Research Bulletin of the Aichi-ken Agricultural Research Center 38: 127-132.Search in Google Scholar

Jones M.B., Mansfield T.A. 1975. Circadian rhythms in plants. Science Progress 62: 103-125.Search in Google Scholar

Jones R.B., Hill M. 1993. The effect of germicides on the longevity of cut flowers. Journal of the American Society for Horticultural Science 118: 350-354.10.21273/JASHS.118.3.350Search in Google Scholar

Kaihara S., Takimoto A. 1980. Studies on the light controlling the time of flower-opening in Pharbitis nil. Plant and Cell Physiology 21: 21-26.Search in Google Scholar

Kaihara S., Takimoto A. 1981a. Effects of light and temperature on flower-opening in Pharbitis nil. Plant and Cell Physiology 22: 215-221.Search in Google Scholar

Kaihara S., Takimoto A. 1981b. Physical basis of flower opening in Pharbitis nil. Plant and Cell Physiology 22: 307-310.Search in Google Scholar

Kaltaler R.E.L., Steponkus P.L. 1976. Factors affecting respiration in cut roses. Journal of the American Society for Horticultural Science 101: 352-354.10.21273/JASHS.101.4.352Search in Google Scholar

Katsuhara M., Hanba Y.T., Shiratake K., Maeshima M. 2008. Expanding roles of plant aquaporins in plasma membranes and cell organelles. Functional Plant Biology 35: 1-14. DOI: 10.1071/FP07130.10.1071/FP07130Search in Google Scholar

Kenis J.D., Silvents S.T., Trippi V.S. 1985. Nitrogen metabolite and senescence-associated change during growth of carnation flowers. Physiologia Plantarum 65: 455-459. DOI: 10.1111/j.1399-3054.1985.tb08673.x.10.1111/j.1399-3054.1985.tb08673.xSearch in Google Scholar

Koning R.E. 1984. The role of plant hormones in the growth of the corolla of Gaillardia grandiflora (Asteraceae) ray flowers. American Journal of Botany 71: 1-8. DOI: 10.2307/2443617.10.1002/j.1537-2197.1984.tb12478.xSearch in Google Scholar

Kuiper D., Ribot S., Van Reenen H.S., Marissen N. 1995. The effect of sucrose on the flower bud opening of ‘Madelon’ cut roses. Scientia Horticulturae 60: 325-336. DOI: 10.1016/0304-4238(94)00706-l.10.1016/0304-4238(94)00706-LSearch in Google Scholar

Kumar N., Srivastava G.C., Dixit K. 2008. Role of sucrose synthase and invertase during petal senescence in rose (Rosa hybrid L.). Journal of Horticultural Science and Biotechnology 83: 520-524. DOI: 10.1080/14620316.2008.11512416.10.1080/14620316.2008.11512416Search in Google Scholar

Leigh R.A., Tomos A.D. 1993. Ion distribution in cereal leaves: pathways and mechanisms. Philosophical Transactions of the Royal Society, B: Biological Sciences 341: 75-86. DOI: 10.1098/rstb.1993.0093.10.1098/rstb.1993.0093Search in Google Scholar

Loewus F.A., Dickinson D.B. 1982. Cyclitols. In: Loewus F.A., Tanner W. (Eds.), Encyclopedia of plant physiology, N.S., vol 13A: plant carbohydrates I. Springer, Berlin, pp. 193-216.Search in Google Scholar

Lumsden P.J. 1991. Circadian rhythms and phytochrome. Annual Review of Plant Physiology and Plant Molecular Biology 42: 351-371. DOI: 10.1146/annurev.pp.42.060191.002031.10.1146/annurev.pp.42.060191.002031Search in Google Scholar

Ma N., Tan H., Liu X., Xue J., Li Y., Gao J. 2006. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of Experimental Botany 57: 2763-2773. DOI: 10.1093/jxb/erl033.10.1093/jxb/erl03316844735Search in Google Scholar

Ma N., Xue J., Li Y., Liu X., Dai F., Jia W. et al. 2008. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiology 148: 894-907. DOI: 10.1104/pp.108.120154.10.1104/pp.108.120154255682318715962Search in Google Scholar

Macnish A.J., Leonard R.T., Borda A.M., Nell T.A. 2010. Genetic variation in the postharvest performance and ethylene sensitivity of cut rose flowers. HortScience 45: 790-796.10.21273/HORTSCI.45.5.790Search in Google Scholar

Marousky F.J. 1969. Vascular blockage, water absorption, stomatal opening, and respiration of cut ‘Better times’ roses treated with 8-hydroxiquinoline citrate and sucrose. Journal of the American Society for Horticultural Science 94: 223-226.Search in Google Scholar

Mayak S., Halevy A.H., Sagie S., Bar-Yoseph A., Bravdo B. 1974. The water balance of cut rose flowers. Physiologia Plantarum 31: 15-22. DOI: 10.1111/j.1399-3054.1974.tb03671.x.10.1111/j.1399-3054.1974.tb03671.xSearch in Google Scholar

McKee J., Richards A.J. 1998. Effect of flower structure and flower colour on intrafloral warming, pollen germination and pollen tube growth in winter-flowering Crocus L. (Iridaceae). Botanical Journal of the Linnean Society 128: 369-384. DOI: 10.1111/j.1095-8339.1998.tb02127.x.10.1111/j.1095-8339.1998.tb02127.xSearch in Google Scholar

McQueen-Mason S.J., Durachko D.M., Cosgrove D.J. 1992. Two endogenous proteins that induce cellwall extension in plants. Plant Cell 4: 1425-1433. DOI: 10.1105/tpc.4.11.1425.10.1105/tpc.4.11.1425Search in Google Scholar

McQueen-Mason S.J., Cosgrove D.J. 1994. Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that induce wall extension. Proceedings of the National Academy of Sciences USA 91: 6574-6578. DOI: 10.1073/pnas.91.14.6574.10.1073/pnas.91.14.6574Search in Google Scholar

Miyamoto K., Ueda J., Kamisaka S. 1993. Gibberellinenhanced sugar accumulation in growing subhooks of etiolated Pisum sativum seedlings. Effects of gibberellic acid, indoleacetic acid and cycloheximide on invertase activity, sugar accumulation and growth. Physiologia Plantarum 88: 301-306. DOI: 10.1111/j.1399-3054.1993.tb05503.x.10.1111/j.1399-3054.1993.tb05503.xSearch in Google Scholar

Nishitani K., Tominaga R. 1992. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry 267: 21058-21064.Search in Google Scholar

Nishitani K. 1997. The role of endoxyloglucan transferase in the organization of plant cell walls. International Review of Cytology 173: 157-206. DOI: 10.1016/S0074-7696(08)62477-8.10.1016/S0074-7696(08)62477-8Search in Google Scholar

O’Donoghue E.M., Somerfield S.D., Heyes J.A. 2002. Organization of cell walls in Sandersonia aurantiaca floral tissue. Journal of Experimental Botany 53: 513-523. DOI: 10.1093/jexbot/53.368.513.10.1093/jexbot/53.368.51311847250Search in Google Scholar

Okazawa K., Sato Y., Nakagawa T., Asada K., Kato I., Tomita E., Nishitani K. 1993. Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. Journal of Biological Chemistry 268: 25364-25368.Search in Google Scholar

Pan Q-H., Yu X-C., Zhang N., Zou X., Peng C-C., Wang X-L. et al. 2006. Activity, but not expression, of soluble and cell wall-bound acid invertase is induced by abscisic acid in developing apple fruit. Journal of Integrative Plant Biology 48: 536-549. DOI: 10.1111/j.1744-7909.2006.00251.x.10.1111/j.1744-7909.2006.00251.xSearch in Google Scholar

Panteris E., Apostolakos P., Galatis B. 1993. Microtubule organization, mesophyll cell morphogenesis, and intercellular space formation in Adiantum capillus veneris leaflets. Protoplasma 172: 97-110. DOI: 10.1007/bf01379367.10.1007/BF01379367Search in Google Scholar

Parups E.V., Voisey P.W. 1976. Lignin content and resistance to bending of the pedicel in greenhouse grown roses. Journal of Horticultural Science 51: 253-259. DOI: 10.1080/00221589.1976.11514688.10.1080/00221589.1976.11514688Search in Google Scholar

Patrick J.W., Offler C.E. 1996. Post-sieve element transport of photoassimilates in sink regions. Journal of Experimental Botany 47: 1165-1177. DOI: 10.1093/jxb/47.Special_Issue.1165.10.1093/jxb/47.Special_Issue.1165Search in Google Scholar

Paulin A. 1979. Évolucion comparée des glucides dans les divers organs de la rose coupée (var. Carina) alimentée temporairement avec une solution glucosée. Physiologie Végétale 17: 129-143.Search in Google Scholar

Paulin A., Jamain C. 1982. Development of flowers and changes in various sugars during opening of cut carnations. Journal of the American Society for Horticultural Science 107: 258-261.10.21273/JASHS.107.2.258Search in Google Scholar

Reid M.S., Evans R.Y. 1986. Control of cut flower opening. Acta Horticulturae 181: 45-54. DOI: 10.17660/ActaHortic.1986. in Google Scholar

Reid M.S., Dodge L.L., Mor Y., Evans R.Y. 1989. Effects of ethylene on rose opening. Acta Horticulturae 261: 215-220.10.17660/ActaHortic.1989.261.27Search in Google Scholar

Reid M.S., Evans R.Y., Dodge L.L., Mor Y. 1989. Ethylene and silver thiosulfate influence opening of cut rose flowers. Journal of the American Society for Horticultural Science 114: 436-440.10.21273/JASHS.114.3.436Search in Google Scholar

Roberts I.N., Lloyd C.W., Roberts K. 1985. Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta 164: 439-447. DOI: 10.1007/BF00395959.10.1007/BF00395959Search in Google Scholar

Roitsch T., González M-C. 2004. Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9: 606-613. DOI: 10.1016/j.tplants.2004. in Google Scholar

Rose J.K.C., Lee H.H., Bennett A.B. 1997. Expression of a divergent expansin gene is fruit-specific and ripeningregulated. Proceedings of the National Academy of Sciences USA 94: 5955-5960.10.1073/pnas.94.11.5955Search in Google Scholar

Rose J.K.C., Bennett A.B. 1999. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science 4: 176-183. DOI: 10.1016/S1360-1385(99)01405-3.10.1016/S1360-1385(99)01405-3Search in Google Scholar

Rose J.K.C., Braam J., Fry S.C., Nishitani K. 2002. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant and Cell Physiology 43: 1421-1435. DOI: 10.1093/pcp/pcf171.10.1093/pcp/pcf17112514239Search in Google Scholar

Roberts A.V., Debener T., Gudin S. 2003. Elsevier Academic Press, Amsterdam. Encyclopedia of rose science, 1st ed., vol. 2, pp. 504-512.Search in Google Scholar

Saab I.N., Sachs M.M. 1996. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiology 112: 385-391. DOI: 10.1104/pp.112.1.385.10.1104/pp.112.1.3851579608819334Search in Google Scholar

Saito M., Yamaki T. 1967. Retardation of flower opening in Oenothera lamarckiana caused by blue and green light. Nature 214: 1027. DOI: 10.1038/2141027a0.10.1038/2141027a0Search in Google Scholar

Sane A.P., Tripathi S.K., Nath P. 2007. Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene, RbEXPA1. Plant Science 172: 481-487. DOI: 10.1016/j.plantsci.2006. in Google Scholar

Schnabl H., Mayer I. 1976. Dark fixation of CO2 by flowers of cut roses. Planta 131: 51-55. DOI: 10.1007/BF00387345.10.1007/BF0038734524424695Search in Google Scholar

Schröder J., Stenger H., Wernicke W. 2001. α-Tubulin genes are differentially expressed during leaf cell development in barley (Horgeum vulgare L.). Plant Molecular Biology 45: 723-730. DOI: 10.1023/A:1010648519206.10.1023/A:1010648519206Search in Google Scholar

Shibaoka H. 1994. Plant hormone-induced changes in the orientation of cortical microtubules: Alterations in the cross-linking between microtubules and the plasma membrane. Annual Review of Plant Physiology and Plant Molecular Biology 45: 527-544. DOI: 10.1146/annurev.pp.45.060194.002523.10.1146/annurev.pp.45.060194.002523Search in Google Scholar

Shimizu-Yumoto H., Ichimura K. 2007. Effect of relative humidity and sucrose concentration on leaf injury and vase-life during sucrose pulse treatment in cut Eustoma flowers. Horticultural Research (Japan) 6: 301-305. DOI: 10.2503/hrj.6.301.10.2503/hrj.6.301Search in Google Scholar

Steen D.A., Chadwick A.V. 1981. Ethylene effects in pea stem tissue. Evidence of microtubule mediation. Plant Physiology 67: 460-466. DOI: 10.1104/pp.67.3.460.10.1104/pp.67.3.46042570516661694Search in Google Scholar

Takahashi R., Fujitani C., Yamaki S., Yamada K. 2007. Analysis of the cell wall loosening proteins during rose flower opening. Acta Horticulturae 755: 483-488. DOI: 10.17660/ActaHortic.2007.755.66.10.17660/ActaHortic.2007.755.66Search in Google Scholar

Tang G.Q., Lüscher M., Sturm A. 1999. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11: 177-189. DOI: 10.1105/tpc. in Google Scholar

Tan H., Liu D., Ma N., Xue J., Lu W., Bai J., Gao J. 2006. Ethylene-influenced flower opening and expression of genes encoding ETRs, CTRs, and EIN3s in two rose cultivars. Postharvest Biology and Technology 40: 97-105. DOI: 10.1016/j.postharvbio.2006. in Google Scholar

Trouverie J., Chateau-Joubert S., Thévenot C., Jacquemot M.-P., Prioul J.-L. 2004. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 219: 894-905. DOI: 10.1007/s00425-004-1289-3.10.1007/s00425-004-1289-315179513Search in Google Scholar

Uehara U., Hogetsu T. 1993. Arrangement of cortical microtubules during formation of bordered pit in the tracheids of Texus. Protoplasma 172: 145-153. DOI: 10.1007/BF01379372.10.1007/BF01379372Search in Google Scholar

van Doorn W.G., Schurer K., Witte Y.D. 1989. Role of endogenous bacteria in vascular blockage of cut rose flowers. Journal of Plant Physiology 134: 375-381. DOI: 10.1016/S0176-1617(89)80259-7.10.1016/S0176-1617(89)80259-7Search in Google Scholar

van Doorn W.G., D’hont K. 1994. Interaction between the effects of bacteria and dry storage on the opening and water relations of cut rose flowers. Journal of Applied Bacteriology 77: 644-649. DOI: 10.1111/j.1365-2672.1994.tb02814.x.10.1111/j.1365-2672.1994.tb02814.xSearch in Google Scholar

van Doorn W.G. 1997. Water relations of cut flowers. Horticultural Reviews 18: 1-85.10.1002/9780470650608.ch1Search in Google Scholar

van Doorn W.G., Groenewegen G., van de Pol P.A., Berkholst C.E.M. 1991. Effects of carbohydrates and water status on opening of cut Madelone roses. Postharvest Biology and Technology 1: 47-57.10.1016/0925-5214(91)90018-7Search in Google Scholar

van Doorn W.G., van Meeteren U. 2003. Flower opening and closure: a review. Journal of Experimental Botany 54: 1801-1812. DOI: 10.1093/jxb/erg213.10.1093/jxb/erg21312869518Search in Google Scholar

van Doorn W.G., Kamdee C. 2014. Flower opening and closure: an update. Journal of Experimental Botany 65: 5749-5757. DOI: 10.1093/jxb/eru327.10.1093/jxb/eru32725135521Search in Google Scholar

Vergauwen R., van den Ende W., van Laere A. 2000. The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany 51: 1261-1266. DOI: 10.1093/jexbot/51.348.1261.10.1093/jexbot/51.348.1261Search in Google Scholar

Vissenberg K., Martinez-Vilchez I.M., Verbelen J.-P., Miller J.G., Fry S.C. 2000. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12: 1229-1238. DOI: 10.1105/tpc.12.7.1229.10.1105/tpc.12.7.122914906110899986Search in Google Scholar

Wagner G.J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology 64: 88-93. DOI: 10.1104/pp. in Google Scholar

Wang M., Ding L., Gao L., Li Y., Shen Q., Guo S. 2016. The interactions of aquaporins and mineral nutrients in higher plants. International Journal of Molecular Sciences 17: 1229. DOI: 10.3390/ijms17081229.10.3390/ijms17081229Search in Google Scholar

Welbaum G.E., Meinzer F.C. 1990. Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiology 93: 1147-1153. DOI: 10.1104/pp.93.3.1147.10.1104/pp.93.3.1147Search in Google Scholar

Wernett H.C., Wilfret G.J., Sheehan T.J., Marousky F.J., Lyrene P.M., Knauft D.A. 1996. Postharvest longevity of cut-flower Gerbera. I. Response to selection for vase life of components. Journal of the American Society for Horticultural Science 121: 216-221.10.21273/JASHS.121.2.216Search in Google Scholar

Wernicke W., Günther P., Jung G. 1993. Microtubules and cell shaping in the mesophyll of Nigella damascena L. Protoplasma 173: 8-12. DOI: 10.1007/BF01378857.10.1007/BF01378857Search in Google Scholar

Wu M.J., van Doorn W.G., Reid M.S. 1991. Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. I. Comparison of flower life, respiration and ethylene biosynthesis. Scientia Horticulturae 48: 99-107. DOI: 10.1016/0304-4238(91)90156-s.10.1016/0304-4238(91)90156-SSearch in Google Scholar

Yamada K., Ito M., Oyama T., Nakada M., Maesaka M., Yamaki S. 2007. Analysis of sucrose metabolism during petal growth of cut roses. Postharvest Biology and Technology 43: 174-177. DOI: 10.1016/j.postharvbio.2006. in Google Scholar

Yamada K., Norikoshi R., Suzuki K., Imanishi H., Ichimura K. 2009a. Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method. Planta 230: 1115-1127. DOI: 10.1007/s00425-009-1011-6.10.1007/s00425-009-1011-620183924Search in Google Scholar

Yamada K., Takahashi R., Fujitani C., Mishima K., Yoshida M., Daryl C.J., Yamaki S. 2009b. Cell wall extensibility and effect of cell-wall-loosening proteins during rose flower opening. Journal of the Japanese Society for Horticultural Science 78: 242-251. DOI: 10.2503/jjshs1. in Google Scholar

Yamada K., Norikoshi R., Suzuki K., Nishijima T., Imanishi H., Ichimura K. 2009c. Cell division and expansion growth during rose petal development. Journal of the Japanese Society for Horticultural Science 78: 356-362. DOI: 10.2503/jjshs1.78.356.10.2503/jjshs1.78.356Search in Google Scholar

Zenoni S., Reale L., Tornielli G.B., Lanfaloni L., Porceddu A., Ferrarini A. et al. 2004. Downregulation of the Petunia hybrida α-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16: 295-308. DOI: 10.1105/tpc.018705.10.1105/tpc.01870534190414742876Search in Google Scholar

Zhang L.Y., Peng Y.B., Pelleschi-Travier S., Fan Y., Lu Y.F., Lu Y.M. et al. 2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiology 135: 574-86. DOI: 10.1104/pp.103.036632.10.1104/pp.103.03663242941815122035Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo