Cite

Abbot, J.E., Francis, J.R.D., 1977. Saltation and suspension trajectories of solid grains in a water stream. Philos. Trans. R. Soc. London A, 284, 225–254.10.1098/rsta.1977.0009Search in Google Scholar

Aidun C.K., Lu, Y., Ding, E.-J., 1998. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech., 373, 287–311.10.1017/S0022112098002493Search in Google Scholar

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Clarendon, Oxford.Search in Google Scholar

Ancey, C., Heyman, J., 2014. A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates. J. Fluid Mech., 744, 129–168.10.1017/jfm.2014.74Search in Google Scholar

Ansumali, S., Karlin, I.V., 2002. Entropy function approach to the lattice Boltzmann method. J. Stat. Phys., 107, 291–308.10.1023/A:1014575024265Search in Google Scholar

Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 3, 511–525.10.1103/PhysRev.94.511Search in Google Scholar

Bialik, R.J., Nikora, V.I., Karpiński, M., Rowiński, P.M., 2015. Diffusion of bedload particles in openchannels flows: distribution of travel times and second-order statistics of particle trajectories. Env. Fluid Mech., 15, 1281–1292.10.1007/s10652-015-9420-5Search in Google Scholar

Bialik, R.J., Nikora V., Rowiński, P.M., 2012. 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys., 60, 6, 1639–1660.10.2478/s11600-012-0003-2Search in Google Scholar

Campagnol, J., Radice, A., Ballio, F., Nikora, V., 2015. Particle motion and diffusion at weak bed load: accounting for unsteadiness effects of entrainment and disentrainment. J. Hydr. Res., 53, 5, 633–648.10.1080/00221686.2015.1085920Search in Google Scholar

Chára, Z., Kysela, B., Dolanský, J., 2016. Saltation movement of large spherical particles. In: Proc. Int. Conf. of Numerical Analysis and Applied Mathematics 2016, Rodhes, Greece.10.1063/1.4992191Search in Google Scholar

Chen, S., Doolen, G., 1998. Lattice Boltzmann method for fluid-flows. Ann. Rev. Fluid Mech., 30, 329–364.10.1146/annurev.fluid.30.1.329Search in Google Scholar

Czernuszenko, W., 2009. Model of particle–particle interaction for saltating grains in water. Arch. Hydro-Eng. Env. Mech., 56, 101–120.Search in Google Scholar

Dolanský, J., 2014. Simulation of particle motion in a closed conduit validated against experimental data. In: EFM14-Experimental Fluid Mechanics 2014, Český Krumlov (CZ). EPJ Web of Conferences, vol. 92, pp. 115–120.10.1051/epjconf/20159202012Search in Google Scholar

Fathel, S., Furbish, D., Schmeeckle, M., 2015. Experimental evidence of statistical ensemble behaviour in bed load sediment transport. J. Geophys. Res. Earth Surf., 120, 11, 2298–2317.10.1002/2015JF003552Search in Google Scholar

Feng, Z.-G., Michaelides, E.E., 2004. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comp. Phys., 195, 2, 602–628.10.1016/j.jcp.2003.10.013Search in Google Scholar

Frisch, U., Hasslacher, B., Pomeau, Y., 1986. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett., 56, 1505–1508.10.1103/PhysRevLett.56.1505Search in Google Scholar

Izquierdo, S., Martínez-Lera, P., Fueyo, N., 2009. Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Comput. Math. Appl., 58, 914–921.10.1016/j.camwa.2009.02.014Search in Google Scholar

Ladd, A.J.C., 1994. Particles generally pass through different stages of motion such as rolling, saltation or suspension. J. Fluid Mech., 271, 311–339.10.1017/S0022112094001783Search in Google Scholar

Lallemand, P., Luo, L.-S., 2003. Lattice Boltzmann method for moving boundaries. J. Comp. Phys., 184, 406–421.10.1016/S0021-9991(02)00022-0Search in Google Scholar

Latt, J., Chopard, B., 2006. Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul., 72, 165–168.10.1016/j.matcom.2006.05.017Search in Google Scholar

Liu, H., Ding, Y., Li, M., Lin P., Yu, M.H., Shu, A.P., 2015. A hybrid lattice Boltzmann method–Finite Difference Method model for sediment transport and riverbed deformation. Riv. Res. App., 31, 4, 447–456.10.1002/rra.2735Search in Google Scholar

Lukerchenko, N., Chára, Z., Vlasák, P., 2006. 2D numerical model of particle-bed collision in fluid-particle flows over bed. J. Hydraul. Research, 44, 1, 70–78.10.1080/00221686.2006.9521662Search in Google Scholar

Lukerchenko, N., Piatsevich, S., Chára, Z., Vlasák, P., 2009. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed, J. Hydrol. Hydromech., 57, 2, 100–112.10.2478/v10098-009-0009-xSearch in Google Scholar

Karlin, I.V., Ansumali, S., Chikatamarla, 2006. Elements of the lattice Boltzmann method I: Linear advection equation. Commun. Comput. Phys., 1, 616–655.Search in Google Scholar

Krithivasan, S., Wahal, S., Ansumali, S., 2014. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method. Phys. Rev. E 89, 033313.10.1103/PhysRevE.89.03331324730973Search in Google Scholar

Martin, I.M.B., Marinescu, D.C., Lynch, R.E., Baker, T.S., 1997. Identification of spherical virus particles in digitized images of entire micrographs. J. Struct. Biol., 120, 146–157.10.1006/jsbi.1997.39019417979Search in Google Scholar

Martinez, D.O., Matthaeus, W.H., Chen, S., 1994. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. Fluids, 6, 1285.10.1063/1.868296Search in Google Scholar

McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., 61, 2332–2335.10.1103/PhysRevLett.61.233210039085Search in Google Scholar

Niño, Y., García, M., 1994. Gravel saltation: 2. Modeling. Water Resources Res., 30, 6, 1915–1924.10.1029/94WR00534Search in Google Scholar

Ryu, S., Ko, S., 2012. A comparative study of lattice Boltzmann and volume of fluid method for two dimensional multiphase flows. Nucl. Eng. Tech., 44, 6, 623–638.10.5516/NET.02.2011.025Search in Google Scholar

Succi, S., 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon, Oxford.10.1093/oso/9780198503989.001.0001Search in Google Scholar

Vlasák, P., Kysela, B., Chára, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115–124.10.2478/v10098-012-0010-7Search in Google Scholar

Vlasák, P., Chára, Z., Kysela, B., Konfršt, J., 2013. Coarse grained particle flow in circular pipe. In: Proc. ASME Fluids Engineering Div. Summer Meeting, Incline Village, USA, vol. 1C.10.1115/FEDSM2013-16452Search in Google Scholar

Vlasák, P., Kysela, B., Chára, Z., 2014. Fully stratified particle-laden flow in horizontal circular pipe. Part. Sci. Tech., 32, 2, 179–185.10.1080/02726351.2013.840705Search in Google Scholar

Yan, Y.Y., Zu, Y.Q., Dong, B., 2011. LBM, a useful tool for mesoscale modelling of single and multi-phase flow. Appl. Therm. Eng., 31, 649–655.10.1016/j.applthermaleng.2010.10.010Search in Google Scholar

Wiberg, P.L., Smith, J.D., 1985. A theoretical model for saltating grains in water. J. Geophys. Res., 90, C4, 7341–7354.10.1029/JC090iC04p07341Search in Google Scholar

Yu, Z., Fan, L.-S., 2010. Lattice Boltzmann method for simulating particle-fluid interactions. Particuology, 8, 539–543.10.1016/j.partic.2010.07.012Search in Google Scholar

Yu, D., Mei, R., Shyy, W., 2005. Improved treatment of the open boundary in the method of lattice Boltzmann equation. Progr. Comput. Fluid Dyn., 5, 3–12.10.1504/PCFD.2005.005812Search in Google Scholar

Zou, Q., He, X., 1996. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. Phys. Fluids, 9, 1591–1598.10.1063/1.869307Search in Google Scholar

eISSN:
0042-790X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other