Acceso abierto

Original research. The Assessment of Epicardial Adipose Tissue in Acute Coronary Syndrome Patients. A Systematic Review


Cite

1. World Health Organization, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#Search in Google Scholar

2. Nakanishi K, Fukuda S, Tanaka A, et al. Epicardial Adipose Tissue Accumulation Is Associated with Renal Dysfunction and Coronary Plaque Morphology on Multidetector Computed Tomography. Circ J. 2015;80:196-201. doi: 10.1253/circj.CJ-15-0477.Search in Google Scholar

3. Sacks H, Fain J. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011;38:879-887. doi: 10.1111/j.1440-1681.2011.05601.x.Search in Google Scholar

4. Antonopoulus A, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. 2017. doi:10.1113/JP273049. [Epub ahead of print]Search in Google Scholar

5. Alexopoulus N, Raggi P. Epicardial Adipose Tissue: Another Tassel in the Complex Fabric of Atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2017. PMID: 28124603. [Epub ahead of print]Search in Google Scholar

6. Cheng KH, Chu CS, Lee KT, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2008;32:268-274. doi: 10.1038/sj.ijo.0803726.Search in Google Scholar

7. Talman A, Psaltis P, Cameron D, et al. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4(6):416-429. doi: 10.3978/j.issn.2223-3652.2014.11.05.Search in Google Scholar

8. Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108: 2460-2466. doi: 10.1161/01.CIR.0000099542.57313. C5.Search in Google Scholar

9. Iacobellis G, Pistilli D, Gucciardo M, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005;29:251-255. doi: 10.1016/j.cyto.2004.11.002.Search in Google Scholar

10. Hodas R, Pop S, Opincariu D, et al. Correlations Between Severity of Coronary Lesions and Epicardial Fat Volume in Patients with Coronary Artery Disease - a Multislice CTbased Study. Journal of Interdisciplinary Medicine. 2016;1:71-78. doi: 10.1515/jim-2016-0014.Search in Google Scholar

11. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationship with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536-543. doi: 10.1038/ncpcardio0319.Search in Google Scholar

12. Gitsioudis G, Schmahl C, Missiou A, et al. Epicardial adipose tissue is associated with plaque burden and composition and provides incremental value for the prediction of cardiac outcome. A clinical cardiac computed tomography angiography study. PLoS One. 2016;11:e0155120. doi: 10.1371/ journal.pone.0155120.Search in Google Scholar

13. Nakanishi R, Rajani R, Cheng VY, et al. Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis. 2011;218:363-368. doi: 10.1016/j. atherosclerosis.2011.07.093.Search in Google Scholar

14. Bettencourt N, Toschke A, Leite D, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. International Journal of Cardiology. 2012;158:26-32. doi: 10.1016/j.ijcard.2010.12.085.Search in Google Scholar

15. Mahabadi A, Berg M, Lehmann N, et al. Association of Epicardial Fat With Cardiovascular Risk Factors and Incident Myocardial Infarction in the General Population: The Heinz Nixdorf Recall Study. Journal of the American College of Cardiology. 2013;61:1388-1395. doi: 10.1016/j.jacc.2012.11.062.Search in Google Scholar

16. Nakanishi K, Fukuda S, Tanaka A, et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in nonobese subjects with coronary artery disease. Atherosclerosis. 2014;237:353-60. doi: 10.1016/j.atherosclerosis.2014.09.015.Search in Google Scholar

17. Subbotin V. Neovascularization of coronary tunica intima (DIT) is the cause of coronary atherosclerosis. Lipoproteins invade coronary intima via neovascularization from adventitial vasa vasorum, but not from the arterial lumen: a hypothesis. Theor Biol Med Model. 2012;9:11. doi: 10.1186/1742-4682-9-11.Search in Google Scholar

18. Arad Y, Goodman K, Roth M, Newstein D, Guerci A. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. JACC. 2005;46:158-65. doi: 10.1016/j. jacc.2005.02.088.Search in Google Scholar

19. Tamarappoo B, Dey D, Shmilovich H, et al. Increased pericardial fat volume measured from non-contrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging. 2010;3:1104-e1112. doi: 10.1016/j.jcmg.2010.07.014.Search in Google Scholar

20. Doesch C, Süselbeck T, Haghi D, et al. The relationship between the severity of coronary artery disease and epicardial adipose tissue depends on the left ventricular function. PLoS One. 2012;7:e48330. doi: 10.1371/journal.pone.0048330.Search in Google Scholar

21. Nakanishi K, Fukuda S, Tanaka A, et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in nonobese subjects with coronary artery disease. Atherosclerosis. 2013;237:353-360. doi: 10.1016/j.atherosclerosis.2014.09.015.Search in Google Scholar

22. Fukamachi D, Higuchi Y, Hiro T, et al. Association between the epicardial adipose tissue thickness and the presence of multivessel disease in patients with acute myocardial infarction. Journal of Atherosclerosis and Atherothrombosis. 2014;2:144-151. doi: 10.5551/jat.26120.Search in Google Scholar

23. Bertaso A, Bertol D, Duncan B, Foppa M. Epicardial Fat: Definition, Measurements, and Systematic Review of Main Outcomes. Arq Bras Cardiol. 2013;101:18-28. doi: 10.5935/ abc.20130138.Search in Google Scholar

24. Machann J, Thamer C, Schnoedt B, et al. Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging. 2005;21:455-62. doi: 10.1002/ jmri.20292.Search in Google Scholar

25. Iacobellis G, Assael F, Ribaudo M, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11:304-310. doi: 10.1038/ oby.2003.45.Search in Google Scholar

26. Iacobellis G, Willens H. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. J Am Soc Echocardiogr. 2009;22:1311-1319. doi: 10.1016/j. echo.2009.10.013.Search in Google Scholar

27. Iacobellis G, Willens H, Barbaro G, Sharma AM. Threshold values of high risk echocardiographic epicardial fat thickness. Obesity (Silver Spring). 2008;16:887-892. doi: 10.1038/ oby.2008.6.Search in Google Scholar

28. Iacobellis G, Singh N, Wharton S, Sharma A. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16:1693-1697. doi: 10.1038/oby.2008.251.Search in Google Scholar

29. Jeong J, Jeong M, Yun K, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71:536-539. PMID: 17384455.10.1253/circj.71.53617384455Search in Google Scholar

30. Saura D, Oliva MJ, Rodrı´guez D, Pascual-Figal DA, Hurtado JA, Pinar E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141:311-313. doi: 10.1016/j.ijcard.2008.11.127.Search in Google Scholar

31. Sarin S, Wenger C, Marwaha A, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102:767-771. doi: 10.1016/j. amjcard.2008.04.058.Search in Google Scholar

32. Rosito GA, Massaro J, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605-613. doi: 10.1161/CIRCULATIONAHA.107.743062.Search in Google Scholar

33. Shmilovich H, Dey D, Cheng V, et al. Threshold for the upper normal limit of indexed epicardial fat volume: derivation in a healthy population and validation in an outcomebased study. Am J Cardiol. 2011;108:1680-5. doi: 10.1016/j. amjcard.2011.07.031.Search in Google Scholar

34. Nelson M, Mookadam F, Thota V, et al. Epicardial fat: an additional measurement for subclinical atherosclerosis and cardiovascular risk stratification? J Am Soc Echocardiogr. 2011;24:339-345. doi: 10.1016/j.echo.2010.11.008.Search in Google Scholar

35. Abbara S, Desai J, Cury R, Butler J, Nieman K, Reddy V. Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous trans-epicardial arrhythmia ablation. Eur J Radiol. 2006;57:417-22. doi: 10.1016/j.ejrad.2005.12.030.Search in Google Scholar

36. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. BMJ. 2009;339:b2535. doi: 10.1136/bmj.b2535.Search in Google Scholar

37. Harada K, Amano T, Uetani T, et al. Cardiac 64-Multislice Tomography reveals Increased Epicardial Fat Volume in Patients with Acute Coronary Syndrome. Am J Cardiol. 2011;108:1119-1123. doi: 10.1016/j.atherosclerosis.2014.07.007.Search in Google Scholar

38. Altun B, Colkesent Y, Gazi E, et al. Could Epicardial Adipose Tissue Thickness by Echocardiography be Correlated with Acute Coronary Syndrome Risk Scores. Echocardiography. 2013;30:1130-1134. doi: 10.1111/echo.12276.Search in Google Scholar

39. Tanindi A, Kocaman S, Erkan A, et al. Epicardial adipose tissue thickness is associated with myocardial infarction and impaired coronary perfusion. Anatol J cardiol. 2015;15:224-231. doi: 10.5152/akd.2014.5277.Search in Google Scholar

40. Wang T, Liu Q, Liu C, et al. Correlation of Echocardiographic Epicardial Fat Thickness with Severity of Coronary Artery Disease in Patients with Acute myocardial infarction. Echocardiography. 2014;31:1177-1181. doi: 10.1111/echo.1254.Search in Google Scholar

41. Sen F, Yilmaz S, Balci K, et al. The Relationship Between Epicardial Adipose Tissue Thickness and Infarct-Related Artery Patency in Patients with ST-segment Elevation Myocardial Infarction. Angiology. 2016;67:281-286. doi: 10.1177/0003319715591330.Search in Google Scholar

42. Tscharre M, Hauser C, Rohla M, et al. Epicardial adipose tissue and cardiovascular outcome in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Eur Heart J: Acute Cardiovascular Care. 2016. pii: 2048872616680609. [Epub ahead of print]10.1177/204887261668060927864479Search in Google Scholar

43. Gul I, Zungur M, Aykan A, et al. The relationship between GRACE score and Epicardial Fat thickness in non-STEMI Patients. Arq Bras cardiol. 2016;106:194-200. doi: 10.5935/ abc.20160024.Search in Google Scholar

44. Ozcan F, Turak O, Canpolat U, et al. Association of epicardial fat thickness with TIMI risk score in NSTEMI/USAP patients. Herz. 2013;39:755-760. doi: 10.1007/s00059-013-3914-z.Search in Google Scholar

45. Zencirci E, Zencirci A, Degirmencioglu A, et al. The relationship between epicardial adipose tissue and ST-segment resolution in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels. 2014;2:147-153. doi: 10.1007/ s00380-013-0459-2.Search in Google Scholar

46. De Larochelliere E, Cote J, Gilbert G, et al. Visceral/epicardial adiposity in non-obese and apparently healthy young adults: association with the cardiometabolic profile. Atherosclerosis. 2014;234:23-29. doi: 10.1016/j.atherosclerosis.2014.01.053.Search in Google Scholar

47. Pierdomenico SD1, Pierdomenico AM, Neri M, Cuccurullo F. Epicardial adipose tissue and metabolic syndrome in hypertensive patients with normal body weight and waist circumference. Am J Hypertens. 2014;24:1245-1249. doi: 10.1038/ajh.2011.134.Search in Google Scholar

48. Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12:31-42. doi: 10.1089/met.2013.0107.Search in Google Scholar

49. Opincariu D, Mester A, Dobra M, et al. Prognostic Value of Epicardial Fat Thickness as a Biomarker of Increased Inflammatory Status in Patients with Type 2 Diabetes Mellitus and Acute Myocardial Infarction. Journal of Cardiovascular Emergencies. 2016;2:11-18. doi: 10.1515/jce-2016-0003.Search in Google Scholar

50. Takase H, Dohi Y, Okado T, Hashimoto T, Goto Y, Kimura G. Effects of ezetimibe on visceral fat in the metabolic syndrome: a randomized controlled study. Euro J Clin Invest. 2012;42:1287-1294. doi: 10.1111/eci.12000.Search in Google Scholar

51. Kim M, Tanaka K, Kim M, et al. Epicardial fat tissue: relationship with cardiorespiratory fitness in men. Med Sci Sports Exerc. 2010;42:463-469. doi: 10.1249/MSS.0b013e3181b8b1f0.Search in Google Scholar

52. Park J, Park Y, Kim Y, et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound. 2010;18:121-126. doi: 10.4250/jcu.2010.18.4.121.Search in Google Scholar

53. Bo X, Ma L, Fan J, et al. Epicardial fat volume is correlated with coronary lesion and its severity. Int J Clin Exp Med. 2015;8:4328-4334. PMID: 26064349.Search in Google Scholar

54. Park J, Choi S, Zheng M, et al. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226:134-139. doi: 10.1016/j.atherosclerosis.2012.11.001.Search in Google Scholar

55. Ahn S, Lim H, Joe D, et al. Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart. 2008;94:e7. doi:10.1136/hrt.2007.118471.Search in Google Scholar

56. Alexopoulus N, McLean D, Janik M, Arepalli C, Stillman A, Raggi p. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis. 2010;210:150-154. doi: 10.1016/j.atherosclerosis.2009.11.020.Search in Google Scholar

57. Benedek T, Gyöngyösi M, Benedek I. Multislice Computed Tomographic Coronary Angiography for Quantitative Assessment of Culprit Lesions in Acute Coronary Syndromes. Can J Cardiol. 2013;29:364-371. doi: 10.1016/j.cjca.2012.11.004.Search in Google Scholar

58. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252. doi: 10.1016/j.jcmg.2012.03.019.Search in Google Scholar

59. Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of Coronary Plaque Vulnerability in Acute Coronary Syndromes using Optical Coherence Tomography or Intravascular Ultrasound. A systematic Review. Journal of Cardiovascular Emergencies. 2016;2:173-184. doi: 10.1515/ jce-2016-0028.Search in Google Scholar

60. Jang IK. Optical Coherence Tomography or Intravascular Ultrasound? JACC: Cardiovascular Interventions. 2011;4:492-494. doi: 10.1016/j.jcin.2011.02.004.Search in Google Scholar

61. Tian J, Ren X, Vergallo R, et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63:2209-2216. doi: 10.1016/j.jacc.2014.01.061.Search in Google Scholar

62. Ding J, Hsu F, Harris T, et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2009;90:499-504. doi: 10.3945/ajcn.2008.27358.Search in Google Scholar

63. Granger C, Goldberg R, Dabbous O, et al. Predictors of hospital mortality in the Global Registry of Acute Coronary Events. Arch Intern Med. 2003;163:2345-2353. doi: 10.1001/ archinte.163.19.234.Search in Google Scholar

64. Palmerini T, Genereux P, Caixeta A, et al. Prognostic value of the SYNTAX score in patients with acute coronary syndromes undergoing percutaneous coronary intervention: Analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage StrategY) trial. J Am Coll Cardiol. 2011;57:2389-2397. doi: 10.1016/j.jacc.2011.02.032.Search in Google Scholar

65. Antman E, Cohen M, Bernink P, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284:835-842. doi: 10.1001/jama.284.7.835.Search in Google Scholar

66. de Lemos JA, Braunwald E. ST segment Resolution as a Tool for Assessing the Efficacy of Reperfusion Therapy. J Am Coll Cardiol. 2001;38:1283-1294. doi: 10.1016/S0735-1097(01)01550-9.Search in Google Scholar

67. Opincariu D, Chitu M, Rat N, Benedek I. Integrated ST Segment Elevation Scores and In-hospital Mortality in STEMI Patients Undergoing Primary PCI. Journal of Cardiovascular Emergencies. 2016;2:114-121. doi: 10.1515/jce-2016-0018.Search in Google Scholar

68. Husser O, Bodi V, Sanchis J, et al. White blood cell subtypes after STEMI: temporal evolution, association with cardiovascular magnetic resonance-derived infarct size and impact on the outcome. Inflammation. 2011;34:73-84. doi: 10.1007/s10753-010-9209-0.Search in Google Scholar

69. Odeberg J, Freitag M, Forssell H, et al. Influence of preexisting inflammation on the outcome of acute coronary syndrome: a cross-sectional study. 2016;5:e009968. doi: 10.1136/bmjopen-2015-009968.Search in Google Scholar

70. Tanindi A, Erkan A, Ekici B. Epicardial adipose tissue thickness can be used to predict major adverse cardiac events. Coronary Artery Disease. 2015;26:686-691. doi: 10.1097/ MCA.0000000000000296.Search in Google Scholar

71. Hajsadeghi F, Nabavi V, Bhandari A, et al. Increased epicardial adipose tissue is associated with coronary artery disease and major adverse cardiovascular events. Atherosclerosis. 2014;237:486-489. doi: 10.1016/j.atherosclerosis.2014.09.037.Search in Google Scholar

72. Cheng V, Dey D, Tamarappoo B, et al. Pericardial fat burden on ECG-gated non-contrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging. 2010;3:352-360. doi: 10.1016/j. jcmg.2009.12.013.Search in Google Scholar

73. Yamada H, Sata M. Does Echocardiographic Epicardial Adipose Tissue Thickness become a Usefull Biomarker? Journal of Atheroscler and Thromb. 2015;22:555-556. doi: 10.5551/jat. ED01.Search in Google Scholar

eISSN:
2457-5518
Idioma:
Inglés