1. bookVolumen 7 (2017): Edición 3 (July 2017)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

MIDACO Parallelization Scalability on 200 MINLP Benchmarks

Publicado en línea: 20 Mar 2017
Volumen & Edición: Volumen 7 (2017) - Edición 3 (July 2017)
Páginas: 171 - 181
Recibido: 16 Sep 2016
Aceptado: 15 Nov 2016
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] Babu B., Angira A., A differential evolution approach for global optimisation of minlp problems, In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Singapore, 2002, pp. 880–884.Search in Google Scholar

[2] Cardoso M.F., Salcedo R.L., Azevedo S.F., Barbosa D., A simulated annealing approach to the solution of MINLP problems, Computers Chem. Engng. 12(21), 1997, pp. 1349–1364.10.1016/S0098-1354(97)00015-XSearch in Google Scholar

[3] Costa L., Oliveira P., Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems, Comput Chem Eng, 25(23), 2001, 257-266.10.1016/S0098-1354(00)00653-0Search in Google Scholar

[4] Deep K., Krishna P.S., Kansal M.L., Mohan C., A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput., 212(2), 2009, pp. 505–518.10.1016/j.amc.2009.02.044Search in Google Scholar

[5] European Space Agency (ESA) and Advanced Concepts Team (ACT), Gtop database - global optimisation trajectory problems and solutions, Software available at http://www.esa.int/gsp/ACT/inf/op/globopt.htm, 2011.Search in Google Scholar

[6] Glover F., Parametric tabu-search for mixed integer programs, Comput Oper Res 33(9), 2006, 24492494.10.1016/j.cor.2005.07.009Search in Google Scholar

[7] Gupta S., Tan G., A scalable parallel implementation of evolutionary algorithms for multi-objective optimization on GPUs, Evolutionary Computation (CEC), IEEE Congress on, Sendai, 2015, pp. 1567–1574.10.1109/CEC.2015.7257074Search in Google Scholar

[8] Quinn J.M., Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.Search in Google Scholar

[9] GAMS MINLPlib - A collection of Mixed Integer Nonlinear Programming models. Washington, DC, USA; software available at http://www.gamsworld.org/minlp/minlplib.htm, 2016.Search in Google Scholar

[10] Laessig J., Sudholt D., General upper bounds on the runtime of parallel evolutionary algorithms, Evolutionary Computation, vol. 22, no. 3, 2014, pp. 405-437.10.1162/EVCO_a_00114Search in Google Scholar

[11] Liang B., Wang J., Jiang Y., Huang D., Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP, Engineering Optimization Problems, Chin. J. Chem. Eng. 20(6), 2012, pp. 1074–1080.10.1016/S1004-9541(12)60589-8Search in Google Scholar

[12] Mohamed A.W., An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber., 2015, pp. 1–19.10.1007/s13042-015-0479-6Search in Google Scholar

[13] Munawar A., Redesigning Evolutionary Algorithms for Many-Core Processors Ph.D. Thesis, Graduate School of Information Science and Technology, Hokkaido University, Japan, 2012.Search in Google Scholar

[14] Du X., Ni Y., Yao Z., Xiao R., High performance parallel evolutionary algorithm model based on MapReduce framework, Int. J. Computer Applications in Technology, Vol. 46, No. 3, 2013, pp. 290–296.10.1504/IJCAT.2013.052807Search in Google Scholar

[15] Powell D., Hollingsworth J., A NSGA-II, web-enabled, parallel optimization framework for NLP and MINLP, Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 2145–2150.10.1145/1276958.1277372Search in Google Scholar

[16] Sakuray Pais M., Yamanaka K., Rodrigues Pinto E., Rigorous Experimental Performance Analysis of Parallel Evolutionary Algorithms on Multicore Platforms, In IEEE Latin America Transactions, vol. 12, no. 4, 2014, pp. 805–811.10.1109/TLA.2014.6868886Search in Google Scholar

[17] Schlueter M., Egea J.A., Banga J.R., Extended ant-colony optimization for non-convex mixed integer nonlinear programming, Comput. Oper. Res. 36(7), 2009, 2217–2229.10.1016/j.cor.2008.08.015Search in Google Scholar

[18] Schlueter M., Gerdts M., The Oracle Penalty Method. J. Global Optim. 47(2), 2010, 293–325.10.1007/s10898-009-9477-0Search in Google Scholar

[19] Schlueter, M., Gerdts, M., Rueckmann J.J., A Numerical Study of MIDACO on 100 MINLP Benchmarks, Optimization 7(61), 2012, pp. 873–900.10.1080/02331934.2012.668545Search in Google Scholar

[20] Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J., MIDACO on MINLP Space Applications, Advances in Space Research, 51(7), 2013, 1116–1131.10.1016/j.asr.2012.11.006Search in Google Scholar

[21] Schlueter M., MIDACO Software Performance on Interplanetary Trajectory Benchmarks, Advances in Space Research, 54(4), 2014, 744–754.10.1016/j.asr.2014.05.002Search in Google Scholar

[22] Schlueter M., MIDACO Solver - Global Optimization Software for Mixed Integer Nonlinear Programming, Software available at http://www.midaco-solver.com, 2016.Search in Google Scholar

[23] Schlueter M., Munetomo M., Numerical Assessment of the Parallelization Scalability on 200 MINLP Benchmarks, Proc. of the IEEE-CEC2016 Conference, Vancouver, Canada, 2016.10.1109/CEC.2016.7743877Search in Google Scholar

[24] K. Schittkowski, A Collection of 200 Test Problems for Nonlinear Mixed-Integer Programming in Fortran (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2012.Search in Google Scholar

[25] K. Schittkowski, NLPQLP - A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2009.Search in Google Scholar

[26] K. Socha and M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res. 85, 2008, pp. 1155–1173.10.1016/j.ejor.2006.06.046Search in Google Scholar

[27] Sudholt D., Parallel Evolutionary Algorithms, In Janusz Kacprzyk and Witold Pedrycz (Eds.): Handbook of Computational Intelligence, Springer, 2015.10.1007/978-3-662-43505-2_46Search in Google Scholar

[28] Wasanapradit T., Mukdasanit N., Chaiyaratana N., Srinophakun T., Solving mixed-integer nonlinear programming problems using improved genetic algorithms, Korean J. Chem. Eng. 28(1), 2011, 32–40.10.1007/s11814-010-0323-3Search in Google Scholar

[29] Yiqing L., Xigang Y., Yongjian L., An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints, Comp. Chem. Eng. 3(31), 2007, 153–162.10.1016/j.compchemeng.2006.05.016Search in Google Scholar

[30] Young C.T., Zheng Y., Yeh C.W., Jang S.S., Information-guided genetic algorithm approach to the solution of MINLP problems, Ind. Eng. Chem. Res. 46, 2007, pp. 1527–1537.10.1021/ie060727hSearch in Google Scholar

[31] Yingyong Z., Yongde Z., Qinghua L., Jingang J., Guangbin Y., Improved Multi-objective Genetic Algorithm Based on Parallel Hybrid Evolutionary Theory, International Journal of Hybrid Information Technology Vol.8, No.1, 2015, pp. 133–140.10.14257/ijhit.2015.8.1.11Search in Google Scholar

[32] Yue T., Guan-Zheng T., Shu-Guang D., Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ., 2014, 21:2731–2742.10.1007/s11771-014-2235-6Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo