1. bookVolumen 6 (2016): Edición 4 (October 2016)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Multi-Objective Heuristic Feature Selection for Speech-Based Multilingual Emotion Recognition

Publicado en línea: 10 Aug 2016
Volumen & Edición: Volumen 6 (2016) - Edición 4 (October 2016)
Páginas: 243 - 253
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] R. Kohavi, G.H. John, Wrappers for feature subset selection. Artificial Intelligence, 97, pp. 273-324, 1997.10.1016/S0004-3702(97)00043-XSearch in Google Scholar

[2] S.B. Thrun, The Monk’s problems: a performance comparison of different learning algorithms, Tech. Rept. CMU-CS-91-197, Carnegie Mellon University, Pittsburgh, PA, 1991.Search in Google Scholar

[3] G.H. John, Enhancements to the data mining process. Ph.D. Thesis, Computer Science Department, Stanford University, CA, 1997.Search in Google Scholar

[4] M. Venkatadri, K. Srinivasa Rao, A multiobjective genetic algorithm for feature selection in data mining, International Journal of Computer Science and Information Technologies, vol. 1, no. 5, 2010, pp. 443-448.Search in Google Scholar

[5] Ch. Brester, M. Sidorov, E. Semenkin, Acoustic Emotion Recognition: TwoWays of Feature Selection Based on Self-Adaptive Multi-Objective Genetic Algorithm, Proceedings of the International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2014, pp. 851-855.10.5220/0005148708510855Search in Google Scholar

[6] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2), 2002, pp. 182-197.10.1109/4235.996017Search in Google Scholar

[7] R. Wang, Preference-Inspired Co-evolutionary Algorithms, A thesis submitted in partial fulfillment for the degree of the Doctor of Philosophy, University of Sheffield, 2013, p. 231.Search in Google Scholar

[8] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization, Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems EUROGEN 2001 3242 (103), 2002, pp. 95-100.Search in Google Scholar

[9] D. Whitley, S. Rana, and R. Heckendorn, Island model genetic algorithms and linearly separable problems, Proceedings of AISBWorkshop on Evolutionary Computation, Manchester, UK. Springer, volume 1305 of LNCS, 1997, pp. 109-125.10.1007/BFb0027170Search in Google Scholar

[10] Ch. Brester, E. Semenkin, Cooperative Multiobjective Genetic Algorithm with Parallel Implementation // Advances in Swarm and Computational Intelligence, LNCS 9140, 2015, pp. 471-478.10.1007/978-3-319-20466-6_49Search in Google Scholar

[11] R.W. Picard, Affective computing. Tech. Rep. Perceptual Computing Section Technical Report No. 321, MIT Media Laboratory, 20 Ames St., Cambridge, MA 02139, 1995.Search in Google Scholar

[12] P. Boersma, Praat, a system for doing phonetics by computer, Glot international, vol. 5, no. 9/10, 2002, pp. 341-345.Search in Google Scholar

[13] F. Eyben, M. Wllmer, and B. Schuller, Opensmile: the Munich versatile and fast opensource audio feature extractor, Proceedings of the international conference on Multimedia, 2010. ACM, pp. 1459-1462.10.1145/1873951.1874246Search in Google Scholar

[14] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, A database of german emotional speech, In Interspeech, 2005, pp. 1517-1520.10.21437/Interspeech.2005-446Search in Google Scholar

[15] S. Haq, P. Jackson, Machine Audition: Principles, Algorithms and Systems, chapter Multimodal Emotion Recognition, IGI Global, Hershey PA, Aug. 2010, pp. 398-423.10.4018/978-1-61520-919-4.ch017Search in Google Scholar

[16] A. Schmitt, S. Ultes, and W. Minker, A parameterized and annotated corpus of the cmu let’s go bus information system, Proceedings of International Conference on Language Resources and Evaluation (LREC), 2012.Search in Google Scholar

[17] H. Mori, T. Satake, M. Nakamura, and H. Kasuya, Constructing a spoken dialogue corpus for studying paralinguistic information in expressive conversation and analyzing its statistical/acoustic characteristics, Speech Communication, 53, 2011.10.1016/j.specom.2010.08.002Search in Google Scholar

[18] Ch. Brester, M. Sidorov, E. Semenkin, Speechbased emotion recognition: Application of collective decision making concepts, Proceedings of the 2nd International Conference on Computer Science and Artificial Intelligence (ICCSAI2014), 2014, pp. 216-220.Search in Google Scholar

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H.Witten, The WEKA Data Mining Software: An Update, SIGKDD Explorations, Vol. 11, Issue 1, 2009.10.1145/1656274.1656278Search in Google Scholar

[20] C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. ECIR’05 Proceedings of the 27th European conference on Advances in Information Retrieval Research, 2005, pp. 345-359.10.1007/978-3-540-31865-1_25Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo