1. bookVolumen 6 (2016): Edición 1 (January 2016)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

The Training Of Multiplicative Neuron Model Based Artificial Neural Networks With Differential Evolution Algorithm For Forecasting

Publicado en línea: 13 Jan 2016
Volumen & Edición: Volumen 6 (2016) - Edición 1 (January 2016)
Páginas: 5 - 11
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5, 1943, 115–133.10.1007/BF02478259Search in Google Scholar

[2] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Represantations by Backpropagating Errors, Nature, 323, 1986, 533-536.10.1038/323533a0Search in Google Scholar

[3] M. Basu, T.K. Ho, Learning behavior of single neuron classifiers onlinearly separable or nonseparable inputs, In IEEE LICNN’99, 1999.Search in Google Scholar

[4] R. Labib, New single neuron structure for solving non-linear problems, In IEEE IJCNN’99, 1999, 617–620.Search in Google Scholar

[5] T.A. Plate, Randomly connected sigma–pi neurons can form associator networks, NETCNS: Network: Computation in Neural Systems, 11, 2000, 321–322.10.1088/0954-898X_11_4_305Search in Google Scholar

[6] C.N. Zhang, M. Zhao, M. Wang, Logic operations based on single neuron rational model, IEEE Transactions on Neural Networks, 11, 2000, 739–747.10.1109/72.846745Search in Google Scholar

[7] R.N. Yadav, N. Kumar, P.K. Kalra, J. John, Learning with generalized-mean neuron model. Neurocomputing, 69, 2006, 2026-2032.10.1016/j.neucom.2005.10.006Search in Google Scholar

[8] M. Shiblee, B. Chandra, P.K. Kalra, Learning of geometric mean neuron model using resilient propagation algorithm, Expert Systems with Applications, 37, 2010, 7449-7455.10.1016/j.eswa.2010.04.018Search in Google Scholar

[9] C.H. Aladag, E. Egrioglu, U. Yolcu, Forecast combination by using artificial neural networks, Neural Processing Letters, 32 (3), 2010, 269–276.10.1007/s11063-010-9156-7Search in Google Scholar

[10] G. Zhang, B.E. Patuwo, Y.M. Hu, Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14, 1998, 35-62.10.1016/S0169-2070(97)00044-7Search in Google Scholar

[11] R. Sharda, Neural networks for the MS/OR analyst: An application bibliography, Interfaces, 24 (2), 1994, 116–130.10.1287/inte.24.2.116Search in Google Scholar

[12] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, Predict- ing the future: A connectionist approach, International Journal of Neural Systems, 1, 1990, 193–209.10.1142/S0129065790000102Search in Google Scholar

[13] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, Predict- ing sunspots and exchange rates with connectionist networks. In: Casdagli, M., Eubank, S. (Eds.), Nonlinear Modeling and Forecasting. Addison-Wesley, Redwood City, CA, 1992, 395–432Search in Google Scholar

[14] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, C. Muller, Neural modeling for time series: a statistical stepwise method for weight elimination, IEEE Transactions on Neural Networks, 6(6), 1995, 1355–1364.10.1109/72.471372Search in Google Scholar

[15] R.N. Yadav, P.K. Kalra, J. John, Time series prediction with single multiplicative neuron model, Applied Soft Computing, 7, 2007, 1157-1163.10.1016/j.asoc.2006.01.003Search in Google Scholar

[16] L. Zhao, Y. Yang, PSO-based single multiplicative neuron model for time series prediction, Expert Systems with Applications, 36, 2009, 2805-2812.10.1016/j.eswa.2008.01.061Search in Google Scholar

[17] C.H. Aladag, E. Egrioglu, U. Yolcu, A.Z. Dalar A new time invariant fuzzy time series forecasting method based on particle swarm optimization, Applied Soft Computing, 12, 2012, 3291-3299.10.1016/j.asoc.2012.05.002Search in Google Scholar

[18] R. Storn, K. Price, Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.Search in Google Scholar

[19] G. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 200, 159-175.10.1016/S0925-2312(01)00702-0Search in Google Scholar

[20] C.H. Aladag, E. Egrioglu, C. Kadilar, Forecasting nonlinear time series with a hybrid methodology, Applied Mathematic Letters, 22, 2009, 1467-1470.10.1016/j.aml.2009.02.006Search in Google Scholar

[21] U. Yolcu, E. Egrioglu, C.H. Aladag, A new linear & nonlinear artificial neural network model for time series forecasting, Decision Support Systems, 2013, 1340–1347.10.1016/j.dss.2012.12.006Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo